Math 322: Problem Set 9 (due 13/11/2014)

P1. In class we classified the groups of order 12, finding the isomorphism types A_{12} , C_{12} , $C_4 \ltimes C_3$, $C_2 \ltimes C_6$, $C_2 \ltimes S_6$. The dihedral group D_{12} is a group of order 12 – where does it fall in this classification?

Sylow's Theorems

- 1. Let *G* be a group of order *n*, and for each p|n let P_p be a *p*-Sylow subgroup. (a) Show that $\langle \bigcup_{p|n} P_p \rangle = G$.
 - (*b) Suppose that G has a unique p-Sylow subgroup for each p. Show that $G \simeq \prod_{p|n} P_p$ (direct product).
- 2. Show that there is no simple group of order 36 (hint: construct a non-trivial action on a set of size 4).
- **3. *G* be a finite group, P < G a Sylow subgroup. Show that $N_G(N_G(P)) = N_G(P)$ (hint: let $g \in N_G(N_G(P))$) and consider the subgroup gPg^{-1}).
- 4. Let *G* be a group of order $255 = 3 \cdot 5 \cdot 17$.
 - (a) Show that $n_{17}(G) = 1$.
 - (*b) Show that P_{17} is central in G (hint: conjugation gives a homomorphism $G \rightarrow Aut(P_{17})$).
 - (*c) Show that $n_5(G) = 1$
 - (d) Show that P_5 is also central in G.
 - (e) Show that $G \simeq C_3 \times C_5 \times C_{17} \simeq C_{255}$.
- 5. Let *G* be a group of order 140
 - (a) Show that $G \simeq H \ltimes C_{35}$ where *H* is a group of order 4.
 - (*b) Classify actions of C_4 on C_{35} and determine the isomorphism classes of groups of order 140 with $P_2 \simeq C_4$.
 - (**c) Classify actions of V on C_{35} and determine the isomorphism classes of groups of order 140 with $P_2 \simeq V$.