Math 322: Problem Set 7 (due 30/10/2014)

Practice problems

- P1. Let *G* be a commutative group and let $k \in \mathbb{Z}$.
 - (a) Show that the map $x \mapsto x^{\overline{k}}$ is a group homomorphism $G \to G$.
 - (b) Show that the subsets $G[k] = \{g \in G \mid g^k = e\}$ and $\{g^k \mid g \in G\}$ are subgroups.

RMK For a general group *G* we let $G^k = \langle \{g^k \mid g \in G\} \rangle$ be the subgroup generated by the *k*th powers. You have shown that, for a commutative group, $G^k = \{g^k \mid g \in G\}$.

- P2. Let G commutative group where every element has order dividing p.
 - (a) Endow *G* with the structure of a vector space over \mathbb{F}_p .
 - (b) Show that $\dim_{\mathbb{F}_p} G = k$ iff $\#G = p^k$ iff $G \simeq (C_p)^k$.
 - (c) Show that for any $X \subset G$, we have $\langle X \rangle = \operatorname{Span}_{\mathbb{F}_p} X$.

P3. For a field F let $H = \left\{ \begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} \mid x, y, z \in F \right\}$ is called the *Heisenberg group* over F.

(a) Show that *H* is a subgroup of $GL_3(F)$ (you also need to show containment, that is that each element is an invertible matrix).

(b) Show that
$$Z(H) = \left\{ \begin{pmatrix} 1 & 0 & z \\ & 1 & 0 \\ & & 1 \end{pmatrix} \mid z \in F \right\} \simeq F^+.$$

(c) Show that $H/Z(H) \simeq F^+ \times F^+$ via the map $\begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & & 1 \end{pmatrix} \mapsto (x, y).$

- (d) Show that H is non-commutative, hence is not isomorphic to the direct product $F^2 \times F$.
- (e) Suppose $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then $\#H = p^3$ so that *H* is a *p*-group. Show that every element of $H(\mathbb{F}_p)$ has order *p*.

General theory

Fix a group *G*.

- 1. (Correspondence Theorem) Let $f \in \text{Hom}(G,H)$, and let K = Ker(f).
 - (a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of Im(f) = f(G).
 - (b) Show that the bijection respects inclusions, indices and normality (if $K < M_1, M_2 < G$ then $M_1 < M_2$ iff $f(M_1) < f(M_2)$, in which case $[M_2 : M_1] = [f(M_2) : f(M_1)]$, and $M_1 \lhd M_2$ iff $f(M_1) \lhd f(M_2)$).
- 2. Let $X, Y \subset G$ and suppose that $N = \langle X \rangle$ is normal in G. Let $q: G \to G/N$ be the quotient map. Show that $G = \langle X \cup Y \rangle$ iff $G/N = \langle q(Y) \rangle$.

- 3. Let the group *G* act on the set *X*.
 - DEF The *kernel* of the action is the normal subgroup $K = \{g \in G \mid \forall x \in X : g \cdot x = x\}$. PRAC *K* is the kernel of the associated homomorphism $G \to S_X$, hence $K \triangleleft G$ indeed. (a) Construct an action of G/K on *X* "induced" from the action of *G*.
 - DEF An action is called *faithful* its the kernel is trivial.
 - (b) Show that the action of G/K on X is faithful.
 - SUPP Show that this realizes G/K as a subgroup of S_X .
 - (c) Suppose G acts non-trivially on a set of size n. Show that G has a proper normal subgroup of index at most n!.
 - (*d) Show that an infinite simple group has no proper subgroups of finite index.
- **4. Let G be a group of finite order n, and let p be the smallest prime divisor of n. Let M < G be a subgroup of index p. Show that M is normal. RMK In particular, this applies when G is a finite p-group.

p-groups

- 5. Recall the group $\mathbb{Z}\left[\frac{1}{p}\right] = \left\{\frac{a}{p^k} \in \mathbb{Q} \mid a \in \mathbb{Z}, k \ge 0\right\} < \mathbb{Q}^+$, and note that $\mathbb{Z} \lhd \mathbb{Z}\left[\frac{1}{p}\right]$ (why?). (a) Show that $C = \mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is a n group
 - (a) Show that G = Z [1/p] /Z is a *p*-group.
 (b) Show that for every x ∈ G there is y ∈ G with y^p = x (warning: what does y^p mean?)
- *6. If $|G| = p^n$, show for each $0 \le k \le n$ that G contains a normal subgroup of order p^k .
- 7. Let *G* be a finite *p*-group, and let $H \triangleleft G$. Show that if *H* is non-trivial then so is $H \cap Z(G)$.

Supplement: Generation of finite *p*-groups

- A. Let *G* be a finite commutative *p*-group.
 - (a) Show that G^p is a proper subgroup (problem P1 is relevant here).
 - (b) Show that G/G^p is a non-trivial commutative group where every element has order p.
 - Let $X \subset G$ be such that its image under the quotient map generates G/G^p .
 - (c) For $k \ge 0$ let $g_k \in G^{p^k}$ ($G^1 = G$). Show that there is $w \in \langle X \rangle$ and $g_{k+1} \in G^{p^{k+1}}$ such that $g_k = w^{p^k} g_{k+1}$.
 - (d) Suppose that $\#G = p^n$. Show that $G^{p^n} < \langle X \rangle$, and then by backward induction eventually show that $G = G^1 < \langle X \rangle$.
 - RMK You have proved: X generates G iff q(X) generates G/G^p . In particular, the minimal number of generators is exactly $\dim_{\mathbb{F}_p} G/G^p = \log_p [G:G^p]$.
- RMK In fact, for any *p*-group, *G*, *X* generates *G* iff its image generates $G/G'G^p$ where *G'* is the derived (commutator) subgroup.