Math 322: Problem Set 6 (due 23/10/2014)

Practice problems

P1. Let G be a group and let X be a set of size at least 2 . Fix $x_{0} \in X$ and for $g \in G, x \in X$ set $g \cdot x=x_{0}$.
(a) Show that this operation satisfies $(g h) \cdot x=g \cdot(h \cdot x)$ for all $g, h \in G, x \in X$.
(b) This is not a group action. Why?

P2. Label the elements of the four-group V by $1,2,3,4$ in some fashion, and explicitely give the permutation corresponding to each element by the regular action.
P3. Repeat with S_{3} acting on itself by conjugation (you will now have six permutations in S_{6}).
P4. Let G act on X. Say that $A \subset X$ is G-invariant if for every $g \in G, a \in A$ we have $g \cdot a \in A$.
(a) Show that A is G-invariant iff $g \cdot A=A$ ($g \cdot A$ in the sense of problem 4(a)).
(b) Suppose A is G-invariant. Show that the restriction of the action to A (formally, the binary operation $\left.\cdot \upharpoonright_{G \times A}\right)$ is an action of G on A.

Simplicity of A_{n}

1. Let $V=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$. Show that $V \triangleleft S_{4}$, so that S_{4} is not simple.
2. (The normal subgroups of S_{n}) Let $N \triangleleft S_{n}$ with $n \geq 5$.
(a) Let G be a group and let $H \triangleleft G$ be a normal subgroup isomorphic to C_{2}. Show that $H<Z(G)$ (hint: let $H=\{1, h\}$, let $g \in G$, and consider the element $g h g^{-1}$).
(b) Suppose that $N \cap A_{n} \neq\{$ id $\}$. Show that $N \supset A_{n}$ and conclude that $N=A_{n}$ or $N=S_{n}$ (hint: what is the index of N ?)
(c) Suppose that $N \cap A_{n}=\{\mathrm{id}\}$. Show that N is isomorphic to a subgroup of C_{2} (hint: restrict sgn: $S_{n} \rightarrow C_{2}$ to N).
(d) Show that if $n \geq 3$ then $Z\left(S_{n}\right)=\{\mathrm{id}\}$, and conclude that in case (c) we must have $N=\mathrm{id}$.
3. Let X be an infinite set.
(a) Show that $S_{X}^{\mathrm{fin}}=\left\{\sigma \in S_{X} \mid \operatorname{supp}(\sigma)\right.$ is finite $\}$ is a subgroup of S_{X}.

PRAC For finite $F \subset X$ there is a natural inclusion $S_{F} \hookrightarrow S_{X}$, which is a group homomorphism, an isomorphism onto its image. Let $\operatorname{sgn}_{F}: S_{F} \rightarrow\{ \pm 1\}$ be the sign character.
DEF For $\sigma \in S_{X}^{\mathrm{fin}}$ define $\operatorname{sgn}(\sigma)=\operatorname{sgn}_{F}(\sigma)$ for any finite F such that $\sigma \in S_{F}$.
(c) Show that $\operatorname{sgn}(\sigma)$ is well-defined (independent of F) and a group hom $S_{X}^{\mathrm{fin}} \rightarrow\{ \pm 1\}$.
(d) The infinite alternating group A_{X} is kernel of this homomorphism. Show that A_{X} is simple.

Group actions

4. Let the group G act on the set X.
(a) For $g \in G$ and $A \in P(X)$ set $g \cdot A=\{g \cdot a \mid a \in A\}=\{x \in X \mid \exists a \in A: x=g \cdot a\}$. Show that this defines an action of G on $P(X)$.
(b) In PS2 we endowed $P(X)$ with a group structure. Show that the action of (a) is by automorphism: that the map $A \mapsto g \cdot A$ is a group homomorphism $(P(X), \Delta) \rightarrow(P(X), \Delta)$.
(c) Let Y be another set. For $f: X \rightarrow Y$ set $(g \cdot f)(x)=f\left(g^{-1} \cdot x\right)$. Show that this defines an action of G on Y^{X}, the set of functions from X to Y.
$(* \mathrm{~d})$ Suppose that $Y=\mathbb{R}$ (or any field), so that \mathbb{R}^{X} has the structure of a vector space over \mathbb{R}. Show that the action of (c) is by linear maps.
5. (Some stabilizers) The action of S_{X} on X induces an action on $P(X)$ as in problem 3(a). Suppose that X is finite, $\# X=n$.
(a) Show that the orbits of S_{X} on $P(X)$ are exactly the sets $\binom{X}{k}=\{A \subset X \mid \# A=k\}$.

SUPP When X is infinite, $\binom{X}{\kappa}$ are orbits if $\kappa<|X|$, but there are multiple orbits on $\binom{X}{|X|}$, parametrized by the cardinality of the complement.
(b) Let $A \subset X$. Show that $\operatorname{Stab}_{S_{X}}(A) \simeq S_{A} \times S_{X-A}$.
(c) Use (a),(b) to show that $\#\binom{X}{k}=\frac{n!}{k!(n-k)!}$.

Conjugation

6. Let G be a finite group, H a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).
RMK There exists an infinite group in which all non-identity elements are conjugate.

Supplement: Cyclic Groups

A. Let $H \subset \mathbb{Z} / n \mathbb{Z}$ be a subgroup other than $\{\overline{0}\}$.
(a) Let a be the smallest positive integer such that $\bar{a} \in H$. Show that $H=\{\overline{m a} \mid m \in \mathbb{Z}\}$.
(b) Let $d=\operatorname{gcd}(a, n)$. Show that $\bar{d} \in H$ and conclude that a divides n.
(c) Conversely, show that if $n=a b$ then $\{\overline{0}, \bar{a}, \overline{2 a}, \cdots, \overline{(b-1) a}\}$ is a subgroup of $\mathbb{Z} / n \mathbb{Z}$.
(d) Conclude that $\mathbb{Z} / n \mathbb{Z}$ has exactly one subgroup of order d for each $d \mid n$.
B. In this problem we show the converse to the previous one: if G is a finite group having at most one subgroup of every order then G is isomorphic to C_{n}.
(a) For the rest of the problem, let G be the smallest group satisfying the hypothesis which is not cyclic. Show that every proper subgroup of G is cyclic.
(b) Let d be a proper divisor of $n=|G|$. Show that G has $\phi(d)$ elements of order exactly d.
(c) Show that G has elements of order n, and is therefore cyclic.

