Math 322: Problem Set 6 (due 23/10/2014)

Practice problems

- P1. Let *G* be a group and let *X* be a set of size at least 2. Fix $x_0 \in X$ and for $g \in G, x \in X$ set $g \cdot x = x_0$.
 - (a) Show that this operation satisfies $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G, x \in X$.
 - (b) This is not a group action. Why?
- P2. Label the elements of the four-group V by 1,2,3,4 in some fashion, and explicitly give the permutation corresponding to each element by the regular action.
- P3. Repeat with S_3 acting on itself by conjugation (you will now have six permutations in S_6).
- P4. Let *G* act on *X*. Say that $A \subset X$ is *G*-invariant if for every $g \in G$, $a \in A$ we have $g \cdot a \in A$.
 - (a) Show that A is G-invariant iff $g \cdot A = A$ ($g \cdot A$ in the sense of problem 4(a)).
 - (b) Suppose *A* is *G*-invariant. Show that the restriction of the action to *A* (formally, the binary operation $\cdot |_{G \times A}$) is an action of *G* on *A*.

Simplicity of *A_n*

- 1. Let $V = \{id, (12)(34), (13)(24), (14)(23)\}$. Show that $V \triangleleft S_4$, so that S_4 is not simple.
- 2. (The normal subgroups of S_n) Let $N \triangleleft S_n$ with $n \ge 5$.
 - (a) Let *G* be a group and let $H \lhd G$ be a normal subgroup isomorphic to C_2 . Show that H < Z(G) (hint: let $H = \{1, h\}$, let $g \in G$, and consider the element ghg^{-1}).
 - (b) Suppose that $N \cap A_n \neq \{id\}$. Show that $N \supset A_n$ and conclude that $N = A_n$ or $N = S_n$ (hint: what is the index of *N*?)
 - (c) Suppose that $N \cap A_n = \{id\}$. Show that *N* is isomorphic to a subgroup of C_2 (hint: restrict sgn: $S_n \to C_2$ to *N*).
 - (d) Show that if $n \ge 3$ then $Z(S_n) = {id}$, and conclude that in case (c) we must have N = id.
- 3. Let *X* be an infinite set.
 - (a) Show that $S_X^{\text{fin}} = \{ \sigma \in S_X \mid \text{supp}(\sigma) \text{ is finite} \}$ is a subgroup of S_X .
 - PRAC For finite $F \subset X$ there is a natural inclusion $S_F \hookrightarrow S_X$, which is a group homomorphism, an isomorphism onto its image. Let $\operatorname{sgn}_F : S_F \to \{\pm 1\}$ be the sign character.
 - DEF For $\sigma \in S_X^{\text{fin}}$ define $\operatorname{sgn}(\sigma) = \operatorname{sgn}_F(\sigma)$ for any finite *F* such that $\sigma \in S_F$.
 - (c) Show that $sgn(\sigma)$ is well-defined (independent of *F*) and a group hom $S_x^{fin} \to \{\pm 1\}$.
 - (d) The *infinite alternating group* A_X is kernel of this homomorphism. Show that A_X is simple.

Group actions

- 4. Let the group *G* act on the set *X*.
 - (a) For $g \in G$ and $A \in P(X)$ set $g \cdot A = \{g \cdot a \mid a \in A\} = \{x \in X \mid \exists a \in A : x = g \cdot a\}$. Show that this defines an action of G on P(X).
 - (b) In PS2 we endowed P(X) with a group structure. Show that the action of (a) is by *auto-morphism*: that the map $A \mapsto g \cdot A$ is a group homomorphism $(P(X), \Delta) \to (P(X), \Delta)$.
 - (c) Let Y be another set. For $f: X \to Y$ set $(g \cdot f)(x) = f(g^{-1} \cdot x)$. Show that this defines an action of G on Y^X , the set of functions from X to Y.
 - (*d) Suppose that $Y = \mathbb{R}$ (or any field), so that \mathbb{R}^X has the structure of a vector space over \mathbb{R} . Show that the action of (c) is by *linear maps*.

- 5. (Some stabilizers) The action of S_X on X induces an action on P(X) as in problem 3(a). Suppose that X is finite, #X = n.
 - (a) Show that the orbits of S_X on P(X) are exactly the sets $\binom{X}{k} = \{A \subset X \mid \#A = k\}$.
 - SUPP When X is infinite, $\binom{X}{\kappa}$ are orbits if $\kappa < |X|$, but there are multiple orbits on $\binom{X}{|X|}$, parametrized by the cardinality of the complement.
 - (b) Let $A \subset X$. Show that $\operatorname{Stab}_{S_X}(A) \simeq S_A \times S_{X-A}$. (c) Use (a),(b) to show that $\#\binom{X}{k} = \frac{n!}{k!(n-k)!}$.

Conjugation

6. Let G be a finite group, H a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H). RMK There exists an infinite group in which all non-identity elements are conjugate.

Supplement: Cyclic Groups

- A. Let $H \subset \mathbb{Z}/n\mathbb{Z}$ be a subgroup other than $\{0\}$.
 - (a) Let *a* be the smallest positive integer such that $\bar{a} \in H$. Show that $H = \{\overline{ma} \mid m \in \mathbb{Z}\}$.
 - (b) Let d = gcd(a, n). Show that $\overline{d} \in H$ and conclude that *a* divides *n*.
 - (c) Conversely, show that if n = ab then $\{\overline{0}, \overline{a}, \overline{2a}, \dots, \overline{(b-1)a}\}$ is a subgroup of $\mathbb{Z}/n\mathbb{Z}$.
 - (d) Conclude that $\mathbb{Z}/n\mathbb{Z}$ has exactly one subgroup of order d for each d|n.
- B. In this problem we show the converse to the previous one: if G is a finite group having at most one subgroup of every order then G is isomorphic to C_n .
 - (a) For the rest of the problem, let G be the smallest group satisfying the hypothesis which is not cyclic. Show that every proper subgroup of G is cyclic.
 - (b) Let d be a proper divisor of n = |G|. Show that G has $\phi(d)$ elements of order exactly d.
 - (c) Show that G has elements of order n, and is therefore cyclic.