Math 322: Problem Set 5 (due 9/10/2014)

Practice problems

- P1. $H = \{id, (12)\}\$ and $K = \{id, (123), (132)\}\$ are two subgroups of S_3 . Compute the coset spaces S_3/H , $H \setminus S_3$, S_3/K , $K \setminus S_3$.
- P2. Let K < H < G be groups with G finite. Use Lagrange's Theorem to show [G : K] = [G : H][H : K].
- P3. Let N < G satisfy for all $g \in G$ that $gNg^{-1} \subset N$. Show that for all $g \in G$, $gNg^{-1} = N$. P4. Let N < G satisfy for all $g_1, g_2 \in G$ that if $g_1 \equiv_L g_1'(N)$ and $g_2 \equiv_L g_2'(N)$ then $g_1g_2 \equiv_L g_1'g_2'(N)$. (a) Show that for any $g \in G$, $n \in G$ we have $gng^{-1} \equiv_L e(N)$, and conclude that $gNg^{-1} = N$.

 - (b) Give $G/\equiv_L(N)$ a group structure, and construct a homomorphism $q: G \to G/N$ such that N = Ker(q). Conclude that N is normal.

Cosets, normal subgroups and quotients

- 1. (Normalizers and centralizers) Let G be a group, $X \subset G$ a subset. The *centralizer* of X (in G) is $Z_G(X) = \{g \in G \mid \forall x \in X : gx = xg\}$ (in particular $Z(G) = Z_G(G)$ is called the *centre* of G). The normalizer of X (in G) is $N_G(X) = \{g \in G \mid gXg^{-1} = X\}$. Fix H < G.
 - (a) Show that $N_G(X) < G$.
 - PRAC Show that $Z_G(X) < N_G(X)$.
 - (b) Show $H < N_G(H)$.
 - PRAC Let H < K < G. Show that $H \triangleleft K$ iff $K \subset N_G(H)$. In particular, $H \triangleleft G$ iff $N_G(H) = G$.
 - (c) Show that Z(G) is a normal, abelian subgroup of G.
 - PRAC Show that $H \cap Z_G(H) = Z(H)$, in particular that $H \subset Z_G(H)$ iff H is abelian.
- 2. (Semidirect products) Let H, K < G and consider the map $f: H \times K \to G$ given by f(h,k) =hk. Recall that the image of this map is denoted HK.
 - (a) Show that f is injective iff $H \cap K = \{e\}$.
 - SUPP For $x \in HK$ give a bijection $f^{-1}(x) \leftrightarrow H \cap K$, hence a bijection $H \times K \leftrightarrow HK \times H \cap K$. PRAC Show $H < N_G(K) \iff \forall h \in H : hKh^{-1} = K$. In this case we say "H normalizes K".
 - (b) Suppose H normalizes K. Show that HK is a subgroup of G and that $\langle H \cup K \rangle = HK$. Show that $K \triangleleft HK$ (hint: you need to show that $HK < N_G(K)$ and already know that H, Kseparately are contained there).
 - DEF If $H < N_G(K)$ and $H \cap K = \{e\}$ we call HK the (internal) semidirect product of H and K. We write $HK = H \ltimes K$ (combining the symbols for product and normal subgroup).
 - (c) Let HK be the semidirect product of H, K and let $q: HK \to (HK)/K$ be the quotient map. Directly show that the restriction $q \upharpoonright_H : H \to (HK)/K$ is an isomorphism. (Hint: what is the kernel? what is the image?)
 - PRAC Let $g, h \in G$. Show that gh = hg iff the commutator $[g, h] = ghg^{-1}h^{-1}$ has [g, h] = e.
 - For parts (c),(d) suppose that H, K normalize each other and that $H \cap K = \{e\}$
 - (d) Show that H, K commute: hk = kh whenever $h \in H, k \in K$.
 - (e) Show that the map f is an isomorphism onto its image (it's a bijection by part (a); you need to show it is a group homomorphism).
 - DEF In that case we say HK is the (internal) direct product of H and K.

PRAC Let $G = GL_2(\mathbb{R})$ be the group of 2×2 invertible matrices. We will consider the subgroups

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G \middle| ad \neq 0 \right\}, A = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in G \middle| ad \neq 0 \right\} \text{ and } N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{R} \right\}.$$

- (a) Show that these really are subgroups. Evidently $N,A \subset B \subset G$.
- (b) Show that $A \simeq (\mathbb{R}^{\times})^2 = \mathbb{R}^{\times} \times \mathbb{R}^{\times}$. Show that $N \simeq \mathbb{R}^+$.
- (b) Show that $B = N \rtimes A$ (you need to show that B = NA, that $A \cap N = \{I\}$, and that $N \triangleleft B$).
- (c) Directly show that for any fixed a, d with $ad \neq 0$ we have $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} N = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid b \in \mathbb{R} \right\}$, demonstrating part of 2(c).
- 3. Let K < H < G be a chain of subgroups. Let $R \subset G$ be a system of representatives for G/H and let $S \subset H$ be a system of representatives for H/K.
 - (a) Show that the map $R \times S \to RS$ given by $(r, s) \mapsto rs$ is a bijection.
 - (b) Show that $RS = \{rs \mid r \in R, s \in S\}$ is a system of representatives for G/K, and conclude that [G:K] = [G:H][H:K].

RMK See P1 for a numerical proof in the finite case.

- 4. In a previous problem set we defined the subgroup $P_n = \{ \sigma \in S_n \mid \sigma(n) = n \}$ of S_n . We now give an explicit description of S_n/P_n and use that to inductively determine the order of S_n .
 - (a) Show that for $\tau, \tau' \in S_n$ we have $\tau P_n = \tau' P_n$ iff $\tau(n) = \tau'(n)$, and conclude that $[S_n : P_n] = n$.
 - (b) Show that $P_n \simeq S_{n-1}$.
 - (c) Combine (a),(b) into a proof by induction that $|S_n| = n!$.

Challenge problems

- 5. Let *G* be a group
 - (a) Suppose that $x^2 = e$ for all $x \in G$. Show that G is abelian.
 - (**b) Suppose that G has n elements, at least $\frac{3}{4}n$ of which have order 2. Then G is abelian.

6**. Let *G* be group of order *n*. Show that there is $X \subset G$ of size at most $\log_2 n$ such that $G = \langle X \rangle$.

Supplementary Problems: Quotients and the abelianization

- A. (The universal property of G/N) Let $N \triangleleft G$. An "abstract quotient" of a group G is a group \bar{G} , together with a homomorphism $\bar{q} \colon G \to \bar{G}$ such that the property for any $f \colon G \to H$ with kernel containing N there is a unique $\bar{f} \colon \bar{G} \to H$ with $f = \bar{f} \circ \bar{q}$ (in class we saw that the quotient group G/N has this property). Suppose that (\bar{G}', \bar{q}') is another abstract quotient. Show that there is a unique isomorphism $\varphi \colon \bar{G} \to \bar{G}'$ such that $\bar{q}' = \varphi \circ \bar{q}$.
- B. (The Correspondence Theorem) Let $f \in \text{Hom}(G, H)$, and let K = Ker f.
 - (a) For every subgroup M, K < M < G, show that f(M) is a subgroup of the image f(G).
 - (b) Show that the map $M \mapsto f(M)$ is a bijection between the set of subgroups of G containing K and the set of subgroups of the image f(G).
 - (c) Show that this bijection preserves inclusion of subgroups, and also index and normality (in G and f(G), respectively)
 - (d) Let $N \triangleleft G$ and let $X \subset G$ be such that its image in G/N generate G/N. Show that $N \cup X$ generate G.
- D. (The derived subgroup and abelian quotients) Fix a group G and recall that notation $[g,h] = ghg^{-1}h^{-1}$.
 - (a) Let $f \in \text{Hom}(G, H)$ be a homomorphism. Show that f([g, h]) = [f(g), f(h)] for all $g, h \in G$.
 - (b) Deduce from (a) that the set of commutators is invariant under conjugation.
 - DEF For H, K < G set $[H, K] = \langle \{[h, k] \mid h, k \in G\} \rangle$ note that this is the *subgroup* generated by those commutators, not just the set of commutators. In particular, we write G' = [G, G] for the *derived subgroup* (or *commutator subgroup*) of G, the subgroup generated by all the commutators.
 - (c) Show that G' is normal in G.
 - (d) Show that $G^{ab} \stackrel{\text{def}}{=} G/G'$ is abelian (hint: apply (a) to the quotient map).
 - DEF we call G^{ab} the abelianization of G.
 - (e) Let $N \triangleleft G$. Show that G/N is abelian iff $G' \subset N$.
 - (f) Let A be an abelian group and let $q: G \to G^{ab}$ be the quotient map. Show that the map $\Phi: \operatorname{Hom}(G^{ab}, A) \to \operatorname{Hom}(G, A)$ given by $\Phi(f) = f \circ q$ is a bijection.
- E. Compute the derived subgroup and the abelianization of the groups: $C_n, D_{2n}, S_n, GL_n(\mathbb{R})$.