Math 322: Problem Set 5 (due 9/10/2014) Practice problems

P1. $H=\{\mathrm{id},(12)\}$ and $K=\{\mathrm{id},(123),(132)\}$ are two subgroups of S_{3}. Compute the coset spaces $S_{3} / H, H \backslash S_{3}, S_{3} / K, K \backslash S_{3}$.
P2. Let $K<H<G$ be groups with G finite. Use Lagrange's Theorem to show $[G: K]=[G: H][H: K]$.
P3. Let $N<G$ satisfy for all $g \in G$ that $g N g^{-1} \subset N$. Show that for all $g \in G, g N g^{-1}=N$.
P4. Let $N<G$ satisfy for all $g_{1}, g_{2} \in G$ that if $g_{1} \equiv_{L} g_{1}^{\prime}(N)$ and $g_{2} \equiv_{L} g_{2}^{\prime}(N)$ then $g_{1} g_{2} \equiv_{L} g_{1}^{\prime} g_{2}^{\prime}(N)$.
(a) Show that for any $g \in G, n \in G$ we have $g n g^{-1} \equiv_{L} e(N)$, and conclude that $g N g^{-1}=N$.
(b) Give $G / \equiv_{L}(N)$ a group structure, and construct a homomorphism $q: G \rightarrow G / N$ such that $N=\operatorname{Ker}(q)$. Conclude that N is normal.

Cosets, normal subgroups and quotients

1. (Normalizers and centralizers) Let G be a group, $X \subset G$ a subset. The centralizer of X (in G) is $Z_{G}(X)=\{g \in G \mid \forall x \in X: g x=x g\}$ (in particular $Z(G)=Z_{G}(G)$ is called the centre of G). The normalizer of X (in G) is $N_{G}(X)=\left\{g \in G \mid g X g^{-1}=X\right\}$. Fix $H<G$.
(a) Show that $N_{G}(X)<G$.

PRAC Show that $Z_{G}(X)<N_{G}(X)$.
(b) Show $H<N_{G}(H)$.

PRAC Let $H<K<G$. Show that $H \triangleleft K$ iff $K \subset N_{G}(H)$. In particular, $H \triangleleft G$ iff $N_{G}(H)=G$.
(c) Show that $Z(G)$ is a normal, abelian subgroup of G.

PRAC Show that $H \cap Z_{G}(H)=Z(H)$, in particular that $H \subset Z_{G}(H)$ iff H is abelian.
2. (Semidirect products) Let $H, K<G$ and consider the map $f: H \times K \rightarrow G$ given by $f(h, k)=$ $h k$. Recall that the image of this map is denoted $H K$.
(a) Show that f is injective iff $H \cap K=\{e\}$.

SUPP For $x \in H K$ give a bijection $f^{-1}(x) \leftrightarrow H \cap K$, hence a bijection $H \times K \leftrightarrow H K \times H \cap K$. PRAC Show $H<N_{G}(K) \Longleftrightarrow \forall h \in H: h K h^{-1}=K$. In this case we say " H normalizes K ".
(b) Suppose H normalizes K. Show that $H K$ is a subgroup of G and that $\langle H \cup K\rangle=H K$. Show that $K \triangleleft H K$ (hint: you need to show that $H K<N_{G}(K)$ and already know that H, K separately are contained there).
DEF If $H<N_{G}(K)$ and $H \cap K=\{e\}$ we call $H K$ the (internal) semidirect product of H and K. We write $H K=H \ltimes K$ (combining the symbols for product and normal subgroup).
(c) Let $H K$ be the semidirect product of H, K and let $q: H K \rightarrow(H K) / K$ be the quotient map. Directly show that the restriction $q \upharpoonright_{H}: H \rightarrow(H K) / K$ is an isomorphism. (Hint: what is the kernel? what is the image?)
PRAC Let $g, h \in G$. Show that $g h=h g$ iff the commutator $[g, h]=g h g^{-1} h^{-1}$ has $[g, h]=e$.

- For parts (c),(d) suppose that H, K normalize each other and that $H \cap K=\{e\}$
(d) Show that H, K commute: $h k=k h$ whenever $h \in H, k \in K$.
(e) Show that the map f is an isomorphism onto its image (it's a bijection by part (a); you need to show it is a group homomorphism).
DEF In that case we say $H K$ is the (internal) direct product of H and K.

PRAC Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the group of 2×2 invertible matrices. We will consider the subgroups $B=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G \right\rvert\, a d \neq 0\right\}, A=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \in G \right\rvert\, a d \neq 0\right\}$ and $N=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$.
(a) Show that these really are subgroups. Evidently $N, A \subset B \subset G$.
(b) Show that $A \simeq\left(\mathbb{R}^{\times}\right)^{2}=\mathbb{R}^{\times} \times \mathbb{R}^{\times}$. Show that $N \simeq \mathbb{R}^{+}$.
(b) Show that $B=N \rtimes A$ (you need to show that $B=N A$, that $A \cap N=\{I\}$, and that $N \triangleleft B$).
(c) Directly show that for any fixed a, d with $a d \neq 0$ we have $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) N=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$, demonstrating part of 2(c).
3. Let $K<H<G$ be a chain of subgroups. Let $R \subset G$ be a system of representatives for G / H and let $S \subset H$ be a system of representatives for H / K.
(a) Show that the map $R \times S \rightarrow R S$ given by $(r, s) \mapsto r s$ is a bijection.
(b) Show that $R S=\{r s \mid r \in R, s \in S\}$ is a system of representatives for G / K, and conclude that $[G: K]=[G: H][H: K]$.
RMK See P1 for a numerical proof in the finite case.
4. In a previous problem set we defined the subgroup $P_{n}=\left\{\sigma \in S_{n} \mid \sigma(n)=n\right\}$ of S_{n}. We now give an explicit description of S_{n} / P_{n} and use that to inductively determine the order of S_{n}.
(a) Show that for $\tau, \tau^{\prime} \in S_{n}$ we have $\tau P_{n}=\tau^{\prime} P_{n}$ iff $\tau(n)=\tau^{\prime}(n)$, and conclude that $\left[S_{n}: P_{n}\right]=n$.
(b) Show that $P_{n} \simeq S_{n-1}$.
(c) Combine (a),(b) into a proof by induction that $\left|S_{n}\right|=n$!.

Challenge problems

5. Let G be a group
(a) Suppose that $x^{2}=e$ for all $x \in G$. Show that G is abelian.
(**b) Suppose that G has n elements, at least $\frac{3}{4} n$ of which have order 2. Then G is abelian.
$6^{* *}$. Let G be group of order n. Show that there is $X \subset G$ of size at most $\log _{2} n$ such that $G=\langle X\rangle$.

Supplementary Problems: Quotients and the abelianization

A. (The universal property of $G / N)$ Let $N \triangleleft G$. An "abstract quotient" of a group G is a group \bar{G}, together with a homomorphism $\bar{q}: G \rightarrow \bar{G}$ such that the property for any $f: G \rightarrow H$ with kernel containing N there is a unique $\bar{f}: \bar{G} \rightarrow H$ with $f=\bar{f} \circ \bar{q}$ (in class we saw that the quotient group G / N has this property). Suppose that $\left(\bar{G}^{\prime}, \bar{q}^{\prime}\right)$ is another abstract quotient. Show that there is a uinque isomorphism $\varphi: \bar{G} \rightarrow \bar{G}^{\prime}$ such that $\bar{q}^{\prime}=\varphi \circ \bar{q}$.
B. (The Correspondence Theorem) Let $f \in \operatorname{Hom}(G, H)$, and let $K=\operatorname{Ker} f$.
(a) For every subgroup $M, K<M<G$, show that $f(M)$ is a subgroup of the image $f(G)$.
(b) Show that the map $M \mapsto f(M)$ is a bijection between the set of subgroups of G containing K and the set of subgroups of the image $f(G)$.
(c) Show that this bijection preserves inclusion of subgroups, and also index and normality (in G and $f(G)$, respectively)
(d) Let $N \triangleleft G$ and let $X \subset G$ be such that its image in G / N generate G / N. Show that $N \cup X$ generate G.
D. (The derived subgroup and abelian quotients) Fix a group G and recall that notation $[g, h]=$ $g h g^{-1} h^{-1}$.
(a) Let $f \in \operatorname{Hom}(G, H)$ be a homomorphism. Show that $f([g, h])=[f(g), f(h)]$ for all $g, h \in$ G.
(b) Deduce from (a) that the set of commutators is invariant under conjugation.

DEF For $H, K<G$ set $[H, K]=\langle\{[h, k] \mid h, k \in G\}\rangle$ - note that this is the subgroup generated by those commutators, not just the set of commutators. In particular, we write $G^{\prime}=[G, G]$ for the derived subgroup (or commutator subgroup) of G, the subgroup generated by all the commutators.
(c) Show that G^{\prime} is normal in G.
(d) Show that $G^{\mathrm{ab}} \stackrel{\text { def }}{=} G / G^{\prime}$ is abelian (hint: apply (a) to the quotient map).

DEF we call G^{ab} the abelianization of G.
(e) Let $N \triangleleft G$. Show that G / N is abelian iff $G^{\prime} \subset N$.
(f) Let A be an abelian group and let $q: G \rightarrow G^{\text {ab }}$ be the quotient map. Show that the map $\Phi: \operatorname{Hom}\left(G^{\mathrm{ab}}, A\right) \rightarrow \operatorname{Hom}(G, A)$ given by $\Phi(f)=f \circ q$ is a bijection.
E. Compute the derived subgroup and the abelianization of the groups: $C_{n}, D_{2 n}, S_{n}, \mathrm{GL}_{n}(\mathbb{R})$.

