Math 322: Problem Set 4 (due 2/10/2014)

Practice Problems

P1 Let G be a group with $|G|=2$. Show that $G=\{e, g\}$ with $g \cdot g=e$. Show that $G \simeq C_{2}$ (that is, find an isomorphism $C_{2} \rightarrow G$).

P2 Let G be a group. Give a bijection between $\{H<G \mid \# H=2\}$ and $\left\{g \in G \mid g^{2}=e, g \neq e\right\}$.
P3 (Basics of groups and homomorphisms)
(a) Let G, H, K be groups and let $f \in \operatorname{Hom}(G, H)$ and $g \in \operatorname{Hom}(H, K)$. Show that the composition $g \circ f \in \operatorname{Hom}(G, K)$.
(b) Let G, H be groups and $f \in \operatorname{Hom}(G, H)$ be bijective. Then $f^{-1}: H \rightarrow G$ is a homomorphism.

Groups and Homomorphisms

1. Let G be a group, and let $(A,+)$ be an abelian group. For $f, g \in \operatorname{Hom}(G, A)$ and $x \in G$ define $(f+g)(x)=f(x)+g(x)$ (on the right this is addition in A).
(a) Show that $f+g \in \operatorname{Hom}(G, A)$.
(b) Show that $(\operatorname{Hom}(G, A),+)$ is an abelian group.
(*c) Let G be a group, and let id: $G \rightarrow G$ be the identity homomorphism. Define $f: G \rightarrow G$ by $f(x)=(\operatorname{id}(x))(\operatorname{id}(x))=x \cdot x=x^{2}$. Suppose that $f \in \operatorname{Hom}(G, G)$. Show that G is commutative.
2. (External Direct products) Let G, H be groups.
(a) On the product set $G \times H$ define an operation by $(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$. Show that $(G \times H, \cdot)$ is a group.
DEF this is called the (external) direct product of G, H.
(b) Let $\tilde{G}=\left\{\left(g, e_{H}\right) \mid g \in G\right\}$ and $\tilde{H}=\left\{\left(e_{G}, h\right) \mid h \in H\right\}$. Show that \tilde{G}, \tilde{H} are subgroups of $G \times H$ and that $\tilde{G} \cap \tilde{H}=\left\{e_{G \times H}\right\}$.
SUPP Show that \tilde{G}, \tilde{H} are isomorphic to G, H respectively.
(c) Show that for any $x=(g, h) \in G \times H$ we have $x \tilde{G} x^{-1}=\tilde{G}$ and $x \tilde{H} x^{-1}=\tilde{H}$.

EXAMPLE The Chinese remainder theorem shows that $C_{n} \times C_{m} \simeq C_{n m}$ if $\operatorname{gcd}(n, m)=1$.
3. The Klein group or the four-group is the group $V \simeq C_{2} \times C_{2}$.
(a) Write a multiplication table for V.
(b) Show that every $x \in V$ has $x^{2}=e$, and conclude that V is not isomorphic to C_{4}.
(c) Show that $V=H_{1} \cup H_{2} \cup H_{3}$ where $H_{i} \subset V$ are subgroups isomorphic to C_{2}.
(d) Let G be a group of order 4 . Show that G is isomorphic to either C_{4} or to $C_{2} \times C_{2}$.
4. Let G be a group, and let $H, K<G$ be subgroups. Suppose that $H \cup K$ is a subgroup as well. Show that $H \subset K$ or $K \subset H$.
5. Let $H<G$ have index 2 and let $g \in G$. Show that $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}=H$ (hint: show that if $g \notin H$ then $g H=G-H)$.

Supplementary Problems

A. Let G be the isometry group of the Euclidean plane: $G=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid\|f(\underline{x})-f(\underline{y})\|=\|\underline{x}-\underline{y}\|\right\}$.
(a) Show that every $f \in G$ is surjective and injective, and that f is closed under composition.
(b) For $\underline{a} \in \mathbb{R}^{n}$ set $t_{\underline{a}}(\underline{x})=\underline{x}+\underline{a}$. Show that $t_{\underline{a}} \in G$, and that $\underline{a} \rightarrow t_{\underline{a}}$ is an injective group homomorphism $\left(\mathbb{R}^{n},+\right) \rightarrow G$.
DEF Call the image the subgroup of translations and denote it by T.
(c) Let $K=\{g \in G \mid g(\underline{0})=\underline{0}\}$. Show that $K<G$ is a subgroup (we usually denote it $\mathrm{O}(n)$ and called it the orthogonal group).
DEF This is called the orthogonal group and consists of rotations and reflections.
FACT K acts on \mathbb{R}^{n} by linear maps.
(d) Let $g \in G$. Show that there is $t \in T$ such that $g \underline{0}=t \underline{0}$, and hence that $t^{-1} g \in K$. Conclude that $G=T K$.
(e) Show that every $g \in G$ has a unique representation in the form $g=t k, t \in T, k \in K$ (hint: what is $T \cap K ?$)
(f) Show that K normalizes T : if $k \in K, t \in T$ we have $k t k^{-1} \in T$ (hint: use the linearity of k).
(g) Show that $T \triangleleft G$: that for every $g \in G$ we have $g T g^{-1}=T$.

RMK We have shows that G is the semidirect product $G=K \ltimes T$.
B. Let X be a set of size at least 2, and fix $e \in X$. Define $*: X \times X \rightarrow X$ by $x * y=y$.
(a) Show that $*$ is an associative operation and that e is a left identity.
(b) Show that every $x \in X$ has a right inverse: an element \bar{x} such that $x * \bar{x}=e$.
(c) Show that $(X, *)$ is not a group.
C. Let $\left\{G_{i}\right\}_{i \in I}$ be a non-empty family of groups. On the cartesian product $\prod_{i} G_{i}$ define an operation by

$$
(\underline{g} \cdot \underline{h})_{i}=g_{i} h_{i}
$$

(that is, the i th coordinate of $\underline{g} \cdot \underline{h}$ is given by taking $g_{i}, h_{i} \in G_{i}$ and multiplying them in that group).
(a) Show that $\left(\prod_{i} G_{i}, \cdot\right)$ is a group.

DEF This is called the (external) direct product of the G_{i}.
(b) Let $\pi_{j}: \prod_{i} G_{i} \rightarrow G_{j}$ be projection on the j th coordinate. Show that $\pi_{j} \in \operatorname{Hom}\left(\prod_{i} G_{i}, G_{j}\right)$.
(c) (Universal property) Let H be any group, and suppose given for each i a homomorphism $f_{i} \in \operatorname{Hom}\left(H, G_{i}\right)$. Show that there is a unique homomorphism $f: H \rightarrow \prod_{i} G_{i}$ such that for all $i, \pi_{i} \circ \underline{f}=f_{i}$.
(**d) An abstract direct product of the groups G_{i} is a pair $\left(\mathbf{G},\left\{q_{i}\right\}_{i \in I}\right)$ where \mathbf{G} is a group, $q_{i}: \mathbf{G} \rightarrow G_{i}$ are homomorphisms, and the property of (c) holds. Suppose that $\mathbf{G}, \mathbf{G}^{\prime}$ are both abstract direct products of the same family $\left\{G_{i}\right\}_{i \in I}$. Show that $\mathbf{G}, \mathbf{G}^{\prime}$ are isomorphic (hint: the system $\left\{q_{i}\right\}$ and the universal property of \mathbf{G}^{\prime} give a map $\varphi: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$, and the same idea gives a map $\psi: \mathbf{G}^{\prime} \rightarrow \mathbf{G}$. To see that the composition is the identity compare for example $q_{i} \circ \psi \circ \varphi, q_{i} \circ \mathrm{id}_{\mathbf{G}}$ and use the uniqueness of (c).

