Math 322: Problem Set 4 (due 2/10/2014)

Practice Problems

- P1 Let G be a group with |G| = 2. Show that $G = \{e, g\}$ with $g \cdot g = e$. Show that $G \simeq C_2$ (that is, find an isomorphism $C_2 \to G$).
- P2 Let G be a group. Give a bijection between $\{H < G \mid \#H = 2\}$ and $\{g \in G \mid g^2 = e, g \neq e\}$.
- P3 (Basics of groups and homomorphisms)
 - (a) Let G, H, K be groups and let $f \in \text{Hom}(G, H)$ and $g \in \text{Hom}(H, K)$. Show that the composition $g \circ f \in \text{Hom}(G, K)$.
 - (b) Let G,H be groups and $f \in \text{Hom}(G,H)$ be bijective. Then $f^{-1}:H \to G$ is a homomorphism.

Groups and Homomorphisms

- 1. Let *G* be a group, and let (A, +) be an abelian group. For $f, g \in \text{Hom}(G, A)$ and $x \in G$ define (f+g)(x) = f(x) + g(x) (on the right this is addition in *A*).
 - (a) Show that $f + g \in \text{Hom}(G, A)$.
 - (b) Show that (Hom(G,A),+) is an abelian group.
 - (*c) Let G be a group, and let id: $G \to G$ be the identity homomorphism. Define $f: G \to G$ by $f(x) = (\mathrm{id}(x))(\mathrm{id}(x)) = x \cdot x = x^2$. Suppose that $f \in \mathrm{Hom}(G,G)$. Show that G is commutative.
- 2. (External Direct products) Let G, H be groups.
 - (a) On the product set $G \times H$ define an operation by $(g,h) \cdot (g',h') = (gg',hh')$. Show that $(G \times H, \cdot)$ is a group.

DEF this is called the (external) direct product of G,H.

(b) Let $\tilde{G} = \{(g, e_H) \mid g \in G\}$ and $\tilde{H} = \{(e_G, h) \mid h \in H\}$. Show that \tilde{G}, \tilde{H} are subgroups of $G \times H$ and that $\tilde{G} \cap \tilde{H} = \{e_{G \times H}\}$.

SUPP Show that \tilde{G} , \tilde{H} are isomorphic to G, H respectively.

- (c) Show that for any $x = (g,h) \in G \times H$ we have $x\tilde{G}x^{-1} = \tilde{G}$ and $x\tilde{H}x^{-1} = \tilde{H}$.
- EXAMPLE The Chinese remainder theorem shows that $C_n \times C_m \simeq C_{nm}$ if $\gcd(n,m) = 1$.
- 3. The *Klein group* or the *four-group* is the group $V \simeq C_2 \times C_2$.
 - (a) Write a multiplication table for V.
 - (b) Show that every $x \in V$ has $x^2 = e$, and conclude that V is not isomorphic to C_4 .
 - (c) Show that $V = H_1 \cup H_2 \cup H_3$ where $H_i \subset V$ are subgroups isomorphic to C_2 .
 - (d) Let G be a group of order 4. Show that G is isomorphic to either C_4 or to $C_2 \times C_2$.
- 4. Let *G* be a group, and let H, K < G be subgroups. Suppose that $H \cup K$ is a subgroup as well. Show that $H \subset K$ or $K \subset H$.
- 5. Let H < G have index 2 and let $g \in G$. Show that $gHg^{-1} = \{ghg^{-1} \mid h \in H\} = H$ (hint: show that if $g \notin H$ then gH = G H).

Supplementary Problems

- A. Let *G* be the *isometry group* of the Euclidean plane: $G = \{f : \mathbb{R}^n \to \mathbb{R}^n \mid ||f(\underline{x}) f(y)|| = ||\underline{x} y||\}.$
 - (a) Show that every $f \in G$ is surjective and injective, and that f is closed under composition.
 - (b) For $\underline{a} \in \mathbb{R}^n$ set $t_{\underline{a}}(\underline{x}) = \underline{x} + \underline{a}$. Show that $t_{\underline{a}} \in G$, and that $\underline{a} \to t_{\underline{a}}$ is an injective group homomorphism $(\mathbb{R}^n, +) \to G$.

DEF Call the image the subgroup of *translations* and denote it by T.

(c) Let $K = \{g \in G \mid g(\underline{0}) = \underline{0}\}$. Show that K < G is a subgroup (we usually denote it O(n) and called it the *orthogonal group*).

DEF This is called the *orthogonal group* and consists of rotations and reflections.

FACT K acts on \mathbb{R}^n by linear maps.

- (d) Let $g \in G$. Show that there is $t \in T$ such that $g\underline{0} = t\underline{0}$, and hence that $t^{-1}g \in K$. Conclude that G = TK.
- (e) Show that every $g \in G$ has a *unique* representation in the form g = tk, $t \in T$, $k \in K$ (hint: what is $T \cap K$?)
- (f) Show that *K* normalizes *T*: if $k \in K$, $t \in T$ we have $ktk^{-1} \in T$ (hint: use the linearity of k).
- (g) Show that $T \triangleleft G$: that for every $g \in G$ we have $gTg^{-1} = T$.

RMK We have shows that G is the *semidirect product* $G = K \ltimes T$.

- B. Let X be a set of size at least 2, and fix $e \in X$. Define $*: X \times X \to X$ by x * y = y.
 - (a) Show that * is an associative operation and that e is a left identity.
 - (b) Show that every $x \in X$ has a right inverse: an element \bar{x} such that $x * \bar{x} = e$.
 - (c) Show that (X,*) is not a group.
- C. Let $\{G_i\}_{i\in I}$ be a non-empty family of groups. On the cartesian product $\prod_i G_i$ define an operation by

$$(\underline{g} \cdot \underline{h})_i = g_i h_i$$

(that is, the *i*th coordinate of $\underline{g} \cdot \underline{h}$ is given by taking $g_i, h_i \in G_i$ and multiplying them in that group).

- (a) Show that $(\prod_i G_i, \cdot)$ is a group.
- DEF This is called the (external) direct product of the G_i .
- (b) Let $\pi_j : \prod_i G_i \to G_j$ be projection on the *j*th coordinate. Show that $\pi_j \in \text{Hom}(\prod_i G_i, G_j)$.
- (c) (Universal property) Let H be any group, and suppose given for each i a homomorphism $f_i \in \text{Hom}(H, G_i)$. Show that there is a unique homomorphism $\underline{f}: H \to \prod_i G_i$ such that for all $i, \pi_i \circ f = f_i$.
- (**d) An abstract direct product of the groups G_i is a pair $(\mathbf{G}, \{q_i\}_{i \in I})$ where \mathbf{G} is a group, $q_i \colon \mathbf{G} \to G_i$ are homomorphisms, and the property of (c) holds. Suppose that \mathbf{G}, \mathbf{G}' are both abstract direct products of the same family $\{G_i\}_{i \in I}$. Show that \mathbf{G}, \mathbf{G}' are isomorphic (hint: the system $\{q_i\}$ and the universal property of \mathbf{G}' give a map $\varphi \colon \mathbf{G} \to \mathbf{G}'$, and the same idea gives a map $\psi \colon \mathbf{G}' \to \mathbf{G}$. To see that the composition is the identity compare for example $q_i \circ \psi \circ \varphi$, $q_i \circ \mathrm{id}_{\mathbf{G}}$ and use the uniqueness of (c).