Math 322: Problem Set 3 (due 25/9/2014)

Practice problems

- P1 Which of the following are groups? If yes, prove the group axioms. If not, show that an axiom fails.
 - (a) The "half integers" $\frac{1}{2}\mathbb{Z} = \left\{\frac{a}{2} \mid a \in \mathbb{Z}\right\} \subset \mathbb{Q}$, under addition.
 - (b) The "dyadic integers" $\mathbb{Z}[\frac{1}{2}] = \left\{ \frac{a}{2^k} \mid a \in \mathbb{Z}, k \geq 0 \right\} \subset \mathbb{Q}$, under addition. (c) The non-zero dyadic integers, under multiplication.
- P2. [DF1.1.7] Let G = [0,1) be the half-open interval, and for $x, y \in G$ define $x * y = \begin{cases} x+y & \text{if } x+y < 1 \\ x+y-1 & \text{if } x+y \ge 1 \end{cases}$.
 - (a) Show that (G,*) is a commutative group. It is called " $\mathbb{R} \mod \mathbb{Z}$ ".
 - (b) Give an alternative construction of G using the equivalence relation $x \equiv y(\mathbb{Z})$ if $x y \in \mathbb{Z}$
- P3. [DF1.1.9] Let $F = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\} \subset \mathbb{R}$.
 - (a) Show that (F, +) is a group.
 - (*b) Show that $(F \setminus \{0\})$ is a group.

RMK Together with the distributive law, (a),(b) make F a field.

Symmetric Groups

- 1. Show that every element of A_n is a product of 3-cycles (hint: start with $(12)(13) \in A_3$ and $(12)(34) \in A_4$.
- 2. Call $\sigma, \tau \in S_X$ conjugate if there is $\rho \in S_X$ such that $\tau = \rho \sigma \rho^{-1}$.
 - (a) Show that " σ is conjugate to τ " is an equivalence relation.
 - (b) Let β be an r-cycle. Show that $\rho \beta \rho^{-1}$ is also an r-cycle.
 - (c) Show that if $\sigma = \prod_{i=1}^t \beta_i$ is the cycle decomposition of σ , then $\rho \sigma \rho^{-1} = \prod_{i=1}^t (\rho \beta_i \rho^{-1})$ is the cycle decomposition of $\rho \sigma \rho^{-1}$.
 - RMK We have shown: if σ is conjugate to τ then they have the same *cycle structure*: for each r they have the same number of r-cycles.
 - (*d) Suppose σ , τ have the same cycle structure. Show that they are conjugate.
- 3. A permutation matrix is an $n \times n$ matrix which is zero except for exactly one 1 in each row and column (example: the identity matrix). The *Kroncker delta* is defined by $\delta_{a,b} = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$.
 - (a) Given $\sigma \in S_n$ let $P(\sigma)$ be the matrix with $(P(\sigma))_{ij} = \delta_{i,\sigma(j)}$. Show that P is a bijection between S_n and the set of permutation matrices of size n.

23

- (b) Show that $P: S_n \to M_n(R)$ has $P(\sigma \tau) = P(\sigma)P(\tau)$.
- (c) Show that the image of P consists of invertible matrices.
- RMK $det(P(\sigma)) = sgn(\sigma)$.

Groups and homomorphisms

- 4. Which of the following are groups? If yes, prove the group axioms. If not, show that an axiom fails.
 - (a) The non-negative real numbers with the operation $x * y = \max\{x, y\}$.
 - (b) $\mathbb{R} \setminus \{-1\}$ with the operation x * y = x + y + xy.
- 5. Let * be an associative operation on a set G (that means (x*y)*z = x*(y*z), and let $a \in G$. We make the rescursive definition $a^1 = a$, $a^{n+1} = a^n*a$ for $n \ge 1$.
 - (a) Show by induction on m that if $n, m \ge 1$ then $a^n * a^m = a^{n+m}$ and $(a^n)^m = a^{nm}$.
 - SUPP If G is a group, set $a^0 = e$ and $a^{-n} = (a^{-1})^n$ and show that for all $n, m \in \mathbb{Z}$ we have $a^n * a^m = a^{n+m}$ and $(a^n)^m = a^{nm}$.
 - From now on suppose G is a group.
 - (c) [R1.31] Let m, n be relatively prime integers and suppose that $a^m = e$. Show that there is $b \in G$ such that $b^n = a$ (hint: Bezout's Theorem).
 - (d) Let $a \in G$ satisfy $a^n = e$ for some $n \neq 0$ and let $k \in \mathbb{Z}_{\geq 1}$ be minimal such that $a^k = e$. Show that k|n.

DEF We call k the *order* of a. We have shown that $a^n = e$ iff n is divisible by the order of a.

6. Let *G* be a group, and suppose that $f(x) = x^{-1}$ is a group homomorphism $G \to G$. Show that xy = yx for all $x, y \in G$ (we call such *G* abelian).

Supplementary Problems I: Permutations

- A. In this problem we will give an alternative proof of the cycle decomposition of permutations. Fix a set X (which may be infinite) and a permutation $\sigma \in S_X$.
 - (a) Define a relation \sim on X by $i \sim j \leftrightarrow \exists n \in \mathbb{Z} : \sigma^n(i) = j$. Show that this is an equivalence relation.

DEF We'll call the equivalence classes the *orbits* of σ on X.

- (b) Let O be an orbit, and let $\kappa_O = \sigma \upharpoonright_O$ be the *restriction* of σ to O: the function $O \to X$ defined by $\kappa_O(i) = \sigma(i)$ if $i \in O$. Show that $\kappa_O \in S_O$ (note that you need to show that the range of κ_O is in O!)
- (c) Choose $i \in O$ and suppose O is finite, of size r. Show that κ_O is an r-cycle: that mapping $[j]_r \mapsto \kappa_O^j(i)$ gives a well-defined bijection $\mathbb{Z}/r\mathbb{Z} \to O$ (equivalently, that if we set $i_0 = i$, $i_1 = \sigma(i)$, $i_{j+1} = \sigma(i_j)$ and so on we get $i_r = i_0$).

RMK Note that r = 1 is possible now – every fixed point is its own 1-cycle.

(d) Choose $i \in O$ and suppose O is infinite. Show that κ_O is an infinite cycle: that mapping $j \mapsto \kappa_O^j(i)$ gives bijection $\mathbb{Z} \to O$.

RMK We'd like to say

$$\sigma = \prod_{O \in X/\sim} \kappa_O$$

but there very well may be infinitely many cycles if X is infinite. We can instead interpret this as σ being the union of the κ_O : for every $i \in X$ let O be the orbit of i, and then $\sigma(i) = \kappa_O(i)$.

B. In this problem we give an alternative approach to the sign character.

(a) For
$$\sigma \in S_n$$
 set $t(\sigma) = \#\{1 \le i < j \le n \mid \sigma(i) > \sigma(j)\}$ and let $s(\sigma) = (-1)^{t(\sigma)} = \begin{cases} 1 & t(\sigma) \text{ even} \\ 0 & t(\sigma) \text{ odd} \end{cases}$.
Show that for an r -cycle κ we have $s(\kappa) = (-1)^{r-1}$.

- (b) Let $\tau \in S_n$ be a transposition. Show that $t(\tau \sigma) t(\sigma)$ is odd, and conclude that $s(\tau \sigma) = s(\tau)s(\sigma)$.
- (c) Show that $s: S_n \to \{\pm 1\}$ is a group homomorphism.
- (d) Show that $s(\sigma) = \operatorname{sgn}(\sigma)$ for all $\sigma \in S_n$.

Supplementary Problems II: Automorphisms

- C. (The automorphism group) Let G be a group.
 - (a) An isomorphism $f: G \to G$ is called an *automorphism* of A. Show that the set Aut(G) of all automorphisms of G is a group under composition.

DEF Fix $a \in G$. For $g \in G$ set $\gamma_a(g) = aga^{-1}$. This is called "conjugation by a".

- (b) Show that $\gamma_a \in \text{Hom}(G, G)$.
- (*c) Show that $\gamma_a \in \operatorname{Aut}(G)$ and that the map $a \mapsto \gamma_a$ is a group homomorphism $G \to \operatorname{Aut}(G)$. DEF The image of this map is called the group of *inner* automorphisms and is denoted $\operatorname{Inn}(G)$.
- D. Let F be a field. A map $f: F \to F$ is an *automorphism* if it is a bijection and it respects addition and multiplication.
 - (a) Show that $a + b\sqrt{2} \mapsto a b\sqrt{2}$ is an automorphism of the field from problem P3.
 - (b) Show that complex conjugation is an automorphism of the field of real numbers. RMK $\mathbb C$ has many other automorphisms.
 - (c) Supplementary Problem F to PS1 shows that $Aut(\mathbb{R}) = \{id\}$.