MATH 100 – WORKSHEET 16 THE MVT

1. More minima and maxima

(1) Show that the function $f(x) = 3x^3 + 2x - 1 + \sin x$ has no local maxima or minima. You may use that $f'(x) = 9x^2 + 2 + \cos x$.

(2) Let g(x) = xe^{-x²/8}. Given that g'(x) = (1 - x²/4) e^{-x²/8}, find the absolute minimum and maximum of g on
(a) [0,∞)
(b) [-1,4]

(3) Find the critical numbers of
$$h(x) = \begin{cases} x^3 - 6x^2 + 3x & x \le 3\\ \sin(2\pi x) - 18 & x \ge 3 \end{cases}$$
.

2. The Mean Value Theorem

Theorem. Let f be defined and differentiable on [a, b]. Then there is c between a, b such that $\frac{f(b)-f(a)}{b-a} = f'(c)$. Equivalently, for any x there is c between a, x so that f(x) = f(a) + f'(c)(x-a).

(1) Let $f(x) = e^x$ on the interval [0, 1]. Find all values of c so that $f'(c) = \frac{f(1) - f(0)}{1 - 0}$.

(2) Let f(x) = |x| on the interval [-1, 2]. Find all values of c so that $f'(c) = \frac{f(2) - f(-1)}{2 - (-1)}$

(3) Show that $f(x) = 3x^3 + 2x - 1 + \sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that f'(c) = ?)

(4) (Final 2012) If f(1) = 3, f is continuous on [1,4] and $f'(x) \leq -2$ for $x \in (1,4)$, how large can f(4) be?

(5) Show that $|\sin a - \sin b| \le |a - b|$ for all a, b.

(6) Let x > 0. Show that $e^x > 1 + x$ and that $\ln(1 + x) \le x$.