MATH 100 - WORKSHEET 16
 THE MVT

1. More minima and maxima

(1) Show that the function $f(x)=3 x^{3}+2 x-1+\sin x$ has no local maxima or minima. You may use that $f^{\prime}(x)=9 x^{2}+2+\cos x$.
(2) Let $g(x)=x e^{-x^{2} / 8}$. Given that $g^{\prime}(x)=\left(1-\frac{x^{2}}{4}\right) e^{-x^{2} / 8}$, find the absolute minimum and maximum of g on
(a) $[0, \infty)$
(b) $[-1,4]$
(3) Find the critical numbers of $h(x)=\left\{\begin{array}{ll}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{array}\right.$.

2. The Mean Value Theorem

Theorem. Let f be defined and differentiable on $[a, b]$. Then there is c between a, b such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(1) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=$ $\frac{f(1)-f(0)}{1-0}$.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=$ $\frac{f(2)-f(-1)}{2-(-1)}$
(3) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)
(4) (Final 2012) If $f(1)=3, f$ is continuous on $[1,4]$ and $f^{\prime}(x) \leq-2$ for $x \in(1,4)$, how large can $f(4)$ be?
(5) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.
(6) Let $x>0$. Show that $e^{x}>1+x$ and that $\ln (1+x) \leq x$.

