MATH 100 - WORKSHEET 10 LOGARITHMIC DIFFERENTIATION, APPLICATIONS

1. Logarithmic Differentiation

$$
(\log x)^{\prime}=\frac{1}{x} \quad f^{\prime}=f \times(\log f)^{\prime}
$$

(1) Differentiate.
(a) $\frac{x^{5} \cos x}{\sqrt{5}+x}$
(b) x^{x}
(c) $(\log x)^{\cos x}$

2. Applications

Object moves by $s=f(t)$. Then the velocity is $v(t)=\frac{\mathrm{d} s}{\mathrm{~d} t}$ and the acceleration is $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$
(1) The position of a particle at time t is given by $f(t)=\frac{1}{\pi} \sin (\pi t)$.
(a) Find the velocity at time t, and specifically at $t=3$.
(b) When is the particle accelerating? Decelerating?
(2)
(a) Water is filling a cylindrical container of radius $r=10 \mathrm{~cm}$. Suppose that at time t the height of the water is $\left(t+t^{2}\right) \mathrm{cm}$. How fast is the volume growing?
(b) A rocket is flying in space. The momentum of the rocket is given by the formula $p=m v$, where m is the mass and v is the velocity. At a time where the mass of the rocket is $m=1000 \mathrm{~kg}$ and its velocity is $v=500 \frac{\mathrm{~m}}{\mathrm{sec}}$ the rocket is accelerating at the rate $a=20 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$ and losing mass at the rate $10 \frac{\mathrm{~kg}}{\mathrm{sec}}$. Find the rate of change of the momentum with time.
(3) A ball is falling from rest in air. Its height at time t is given by

$$
h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)
$$

where H_{0} is the initial height and t_{0} is a constant.
(a) Find the velocity of the ball. $v(t)=$
(b) Find the acceleration. $a(t)=$
(c) Find $\lim _{t \rightarrow \infty} v(t)$

