MATH 100 - WORKSHEET 10

 LOGARITHMIC DIFFERENTIATION, APPLICATIONS
1. Logarithmic Differentiation

$$
(\log x)^{\prime}=\frac{1}{x} \quad f^{\prime}=f \times(\log f)^{\prime}
$$

(1) Differentiate.
(a) $\frac{x^{5} \cos x}{\sqrt{5}+x}$

Solution: $\log \frac{x^{5} \cos x}{\sqrt{5+x}}=\log \left(x^{5}\right)+\log (\cos x)-\log \sqrt{5+x}=5 \log x+\log \cos x-\frac{1}{2} \log (5+x)$.
Thus

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x^{5} \cos x}{\sqrt{5+x}}\right) & =\left(\frac{x^{5} \cos x}{\sqrt{5+x}}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(5 \log x+\log \cos x-\frac{1}{2} \log (5+x)\right) \\
& =\left(\frac{x^{5} \cos x}{\sqrt{5+x}}\right)\left(\frac{5}{x}-\frac{\sin x}{\cos x}-\frac{1}{2(5+x)}\right) .
\end{aligned}
$$

(b) x^{x}

Solution: Applying logarithmic differentiation, and $\log a^{b}=b \log a$, we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{x}\right) & \stackrel{\log \operatorname{diff}}{=} \\
& x^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{x}\right)\right)=x^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}(x \log x) \\
& \stackrel{\text { pdt rule }}{=}
\end{aligned} x^{x}\left(\log x+\frac{x}{x}\right)=(1+\log x) x^{x} .
$$

(c) $(\log x)^{\cos x}$

Solution: Applying logarithmic differentiation, and $\log a^{b}=b \log a$, we get

$$
\begin{array}{rll}
\frac{\mathrm{d}}{\mathrm{~d} x}\left((\log x)^{\cos x}\right) & \stackrel{\log \text { diff }}{=} & \left((\log x)^{\cos x}\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(\log \left((\log x)^{\cos x}\right)\right) \\
& = & (\log x)^{\cos x} \frac{\mathrm{~d}}{\mathrm{~d} x}((\cos x) \cdot \log \log x) \\
& \stackrel{\text { pdt rule }}{=} & (\log x)^{\cos x}\left(-\sin x \log \log x+\cos x \frac{\mathrm{~d}}{\mathrm{~d} x} \log \log x\right) \\
& \stackrel{\text { chain rule }}{=} & (\log x)^{\cos x}\left(-\sin x \log \log x+\cos x \frac{1}{\log x} \frac{1}{x}\right) \\
& = & (\log x)^{\cos x}\left(\frac{\cos x}{x \log x}-\sin x \log \log x\right) .
\end{array}
$$

2. Applications

Object moves by $s=f(t)$. Then the velocity is $v(t)=\frac{\mathrm{d} s}{\mathrm{~d} t}$ and the acceleration is $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$
(1) The position of a particle at time t is given by $f(t)=\frac{1}{\pi} \sin (\pi t)$.
(a) Find the velocity at time t, and specifically at $t=3$.

Solution: $v(t)=\frac{\mathrm{d} s}{\mathrm{~d} t}=\cos (\pi t)$ by the chain rule. At $t=3$ this reads $v(3)=\cos (3 \pi)=-1$.
(b) When is the particle accelerating? Decelerating?

Solution: $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\pi \sin (\pi t)$ by the chain rule. This is negative for $0<t<\pi$, positive for $\pi<t<2 \pi$, etc.
(2)
(a) Water is filling a cylindrical container of radius $r=10 \mathrm{~cm}$. Suppose that at time t the height of the water is $\left(t+t^{2}\right) \mathrm{cm}$. How fast is the volume growing?
Solution: The volume of a cylinder of radius r and height h is $V=\pi r^{2} h$. In centimetres we are given $r=10, h(t)=t+t^{2}$ so

$$
V(t)=100 \pi\left(t+t^{2}\right)
$$

and

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=100 \pi(1+2 t) \frac{\mathrm{l}}{\text { unit time }}
$$

(b) A rocket is flying in space. The momentum of the rocket is given by the formula $p=m v$, where m is the mass and v is the velocity. At a time where the mass of the rocket is $m=1000 \mathrm{~kg}$ and its velocity is $v=500 \frac{\mathrm{~m}}{\mathrm{~s}}$ the rocket is accelerating at the rate $a=20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ and losing mass at the rate $10 \frac{\mathrm{~kg}}{\mathrm{~s}}$. Find the rate of change of the momentum with time.
Solution: Appling the product rule and using $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$ we have:

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=\frac{\mathrm{d} m}{\mathrm{~d} t} v+m \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{\mathrm{d} m}{\mathrm{~d} t} v+m a
$$

We now plug in the given values $\frac{\mathrm{d} m}{\mathrm{~d} t}=-10 \frac{\mathrm{~kg}}{\mathrm{~s}}$ (the rocket is ejecting mass), $v=500 \frac{\mathrm{~m}}{\mathrm{~s}}, m=$ 1000 kg and $a=20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ to get at the given instant:

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-10 \cdot 500+1000 \cdot 20=15,000 \mathrm{~N}
$$

(3) A ball is falling from rest in air. Its height at time t is given by

$$
h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)
$$

where H_{0} is the initial height and t_{0} is a constant.
(a) Find the velocity of the ball. $v(t)=\frac{\mathrm{d} h}{\mathrm{~d} t}(t)=0-g t_{0}\left(1+t_{0}\left(-\frac{1}{t_{0}}\right) e^{-t / t_{0}}-0\right)=-g t_{0}\left(1-e^{-t / t_{0}}\right)$.
(b) Find the acceleration. $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}(t)=-g t_{0}\left(0-\left(-\frac{1}{t_{0}}\right) e^{-t / t_{0}}\right)=-g e^{-t / t_{0}}$.
(c) Find $\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty}\left(-g t_{0}\right)\left(1-e^{-t / t_{0}}\right)=-g t_{0}\left(1-\lim _{t \rightarrow \infty} e^{-t / t_{0}}\right)$. Now $e^{-t / t_{0}}=$ $\frac{1}{e^{t / t_{0}}} \xrightarrow[t \rightarrow \infty]{ } 0$ since $e^{t / t_{0}}$ grows without bound. We get that the terminal velocity is

$$
\lim _{t \rightarrow \infty} v(t)=-g t_{0}
$$

