MATH 100 - WORKSHEET 4 CONTINUITY, HORIZONTAL ASYMPTOTES, THE DERIVATIVE

1. The Intermediate Value Theorem
(1) Show that:
(a) $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.
(b) There is $x>0$ for which $\frac{1}{x}=\sin x$.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.

2. Horizontal Asymptotes

(1) Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+8}{2 x^{3}-1}$
(c) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}$

Date: 16/9/2014.
(d) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)$
(2) Find the horizontal and vertical asymptotes of $\frac{x^{2}+x+1}{x^{2}-4}$
3. Calculate the derivatives

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=x^{2}$.
(c) $f(x)=\frac{1}{x}$.

