# MATH 100 - SOLVED WORKSHEET 4 CONTINUITY, HORIZONTAL ASYMPTOTES, THE DERIVATIVE 

\author{

1. The Intermediate Value Theorem
}
(1) Show that:
(a) $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.

Solution: $f$ is continuous on $[0,1]$ (polynomial) and $f(0)=1, f(1)=-2$. By the IVT, $f$ takes the value 0 which lies between $1,-2$.
(b) There is $x>0$ for which $\frac{1}{x}=\sin x$.

Solution 1: Let $h(x)=\frac{1}{x}-\sin x$. Then $h$ is continuous for $x>0$ (defined by formula). $h\left(\frac{1}{100}\right)=100-\sin \frac{1}{100} \geq 100-1=99>0$ while $h\left(\frac{\pi}{2}\right)=\frac{2}{\pi}-\sin \frac{\pi}{2}=\frac{2}{\pi}-1=\frac{2-\pi}{\pi}<0$ since $\pi>3$. Conclusion: $h(x)$ changes sign between $\frac{1}{100}$ and $\frac{\pi}{2}$, so $h(x)=0$ somwhere in between, at which point $\frac{1}{x}=\sin x$.
Solution 2: The functions $\frac{1}{x}, \sin x$ are continuous for $x>0$. At $a=\frac{1}{100}$ we have $\sin \frac{1}{100} \leq$ $1<100=\frac{1}{1 / 100}$. At $b=\frac{\pi}{2}$ we have $\sin \frac{\pi}{2}=1>\frac{2}{\pi}$ so $\frac{1}{a}>\sin a$ while $\frac{1}{b}<\sin b$ so for some $x$ between $a, b$ we have $\frac{1}{x}=\sin x$.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain [0,1] and range in [3, 5]. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.

Solution: Let $h(x)=f(x)-(2 x+3)$. If $h(x)=0$ then $f(x)=2 x+3$ and we will be done. $h(x)$ is continuous on $[0,1]$ (formula using continuous functions). $h(0)=f(0)-3$ is in the range [0, 2] because $f(0)$ is in the range $[3,5] . h(1)=f(1)-5$ is in the range $[-2,0]$ because $f(1)$ is in the range $[3,5]$. If $h(0)=0$ or $h(1)=0$ then $x=0$ or $x=1$ would work. Otherwise, $h(0)>0$ (recall the range) and $h(1)<0$ so by the IVT, $h(x)=0$ for some $x$.

## 2. Horizontal Asymptotes

(1) Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=\lim _{x \rightarrow \infty} \frac{x+1 / x}{1-3 / x}=\frac{\lim _{x \rightarrow \infty}\left(x+\frac{1}{x}\right)}{\lim _{x \rightarrow \infty}\left(1-\frac{3}{x}\right)}=\frac{\infty}{1}=\infty$.
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+8}{2 x^{3}-1}=\lim _{x \rightarrow \infty} \frac{1 / x+8 / x^{3}}{2-1 / x^{3}}=\frac{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{8}{x^{3}}}{2-\lim _{x \rightarrow \infty} \frac{1}{x^{3}}}=\frac{0+0}{2-0}=0$.
(c) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x} \cdot \frac{x^{2}}{\sqrt{x^{4}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{4}+\sin x}{x^{4}}}}{\frac{x^{2}-\cos x}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{\sin x}{x^{4}}}}{1-\frac{\cos x}{x^{2}}}$.

Side calculation: For all $x,-1 \leq \sin x \leq 1$ so $-\frac{1}{x^{4}} \leq \frac{\sin ^{x} x}{x^{4}} \leq \frac{1}{x^{4}}$. Since $\lim _{x \rightarrow \infty} \frac{1}{x^{4}}=0=$ $\lim _{x \rightarrow \infty}-\frac{1}{x^{4}}$, by the squeeze theorem also $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{4}}=0$. Similarly, for all $x-1 \leq \cos x \leq 1$ so $-\frac{1}{x^{2}} \leq \frac{\cos x}{x^{2}} \leq \frac{1}{x^{2}}$. Since $\lim _{x \rightarrow \infty} \pm \frac{1}{x^{2}}= \pm \lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$, we have $\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}}=0$.
Conclusion: Applying the limit laws we get

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{\sin x}{x^{4}}}}{1-\frac{\cos x}{x^{2}}}=\frac{\sqrt{1+\lim _{x \rightarrow \infty} \frac{\sin x}{x^{4}}}}{1-\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}}}=\frac{\sqrt{1+0}}{1-0}=1
$$

(d) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)$

Solution 1: We have

$$
\begin{aligned}
\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} & =\frac{\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)\left(\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}} \\
& =\frac{\left(x^{2}+2 x\right)-\left(x^{2}-1\right)}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}=\frac{2 x+1}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}
\end{aligned}
$$

[aside: the numerator and the denominator are roughly of order $x$ ] divide the fraction by $1=\frac{-x}{\sqrt{x^{2}}}$ (since $x \rightarrow-\infty, x$ is eventually negative so $\sqrt{x^{2}}=-x$ ) go get:

$$
\begin{aligned}
\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} & =\frac{2 x+1}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}} / \frac{-x}{\sqrt{x^{2}}} \\
& =\frac{\frac{2 x+1}{-x}}{\sqrt{\frac{x^{2}+2 x}{x^{2}}}+\sqrt{\frac{x^{2}-1}{x^{2}}}}=\frac{-2-\frac{1}{x}}{\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{1}{x^{2}}}}
\end{aligned}
$$

We can now use the limit laws:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right) & =\lim _{x \rightarrow-\infty} \frac{-2-\frac{1}{x}}{\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{1}{x^{2}}}} \\
& =\frac{-\lim _{x \rightarrow-\infty} 2-\lim _{x \rightarrow-\infty} \frac{1}{x}}{\sqrt{1+\lim _{x \rightarrow-\infty} \frac{2}{x}}+\sqrt{1-\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}}} \\
& =\frac{-2-0}{\sqrt{1+0}+\sqrt{1-0}}=\frac{-2}{2}=-1
\end{aligned}
$$

Solution 2: As above, we need to evaluate

$$
\lim _{x \rightarrow-\infty} \frac{2 x+1}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}} .
$$

Now change variables via $x=-u$ so that $u \rightarrow \infty$. The expression becomes:

$$
\lim _{u \rightarrow \infty} \frac{-2 u+1}{\sqrt{u^{2}-2 u}+\sqrt{u^{2}-1}}=\lim _{u \rightarrow \infty} \frac{-2+\frac{1}{u}}{\sqrt{1-\frac{2}{u}}+\sqrt{1-\frac{1}{u^{2}}}}=\frac{-2+0}{\sqrt{1-0}+\sqrt{1-0}}=-1
$$

