MATH 100 - WORKSHEET 3 CONTINUITY

1. Continuity

(1) Which of these functions are continuous? Why?
(a) $f(x)= \begin{cases}x & x<0 \\ \cos x & x \geq 0\end{cases}$
(b) $f(x)= \begin{cases}x & x<0 \\ \sin x & x \geq 0\end{cases}$
(2) Let $f(x)=\frac{x^{3}-x^{2}}{x-1}$.
(a) Why is $f(x)$ discontinuous at $x=1$?
(b) Find b such that $g(x)=\left\{\begin{array}{ll}f(x) & x \neq 1 \\ b & x=1\end{array}\right.$ is continouous everywhere.
(3) Find c, d such that $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ c & x=1 \\ d-x^{2} & x>1\end{array}\right.$ is continuous.
(4) Where are the following functions continuous?
(a) $\frac{x^{2}+2 x+1}{2+\cos x}$
(b) $\frac{2+\cos x}{x^{2}+2 x+1}$
(c) $\log \left((\sin x)^{2}\right)$
(Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

2. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
(1) Show that:
(a) $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.
(b) $\cos x=x$ has a solution.

