MATH 100 - WORKSHEET 2
 LIM却罗

(1) Let $f(x)=\frac{x-3}{x^{2}-x-6}$. What is $\lim _{x \rightarrow 3} f(x)$?
(2) What about $\lim _{x \rightarrow 2} f(x)$? What about $\lim _{x \rightarrow 2+} f(x), \lim _{x \rightarrow 2-} f(x)$?
(3) Evaluate
(a) $\lim _{x \rightarrow 1} \sin (\pi x)$
(b) $\lim _{x \rightarrow \pi+} \frac{1}{\sin (x)}, \lim _{x \rightarrow \pi-} \frac{1}{\sin (x)}$.
(4) Either evaluate the limit or explain why it does not exist
(a) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.
(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions (e^{x}, sin, cos, log, ...) as long as everything is well-defined.
(beware especially of division by zero)
(1) Evaluate using the limit laws:
(a) $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}$
(b) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}$.
(2) Evaluate:
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$.
(b) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.
(c) Suppose that $1 \leq f(x) \leq\left(x^{2}-2 x+2\right)$ for all x. Find $\lim _{x \rightarrow 1} f(x)$.

