MATH 100 – WORKSHEET 2 LIMITS

(1) Let $f(x) = \frac{x-3}{x^2-x-6}$. What is $\lim_{x\to 3} f(x)$?

(2) What about $\lim_{x\to 2} f(x)$? What about $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$?

(3) Evaluate (a) $\lim_{x \to 1} \sin(\pi x)$

(b)
$$\lim_{x \to \pi+} \frac{1}{\sin(x)}$$
, $\lim_{x \to \pi-} \frac{1}{\sin(x)}$.

(4) Either evaluate the limit or explain why it does not exist

(a)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$
(b) $\lim_{x \to 1} f(x)$ where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$

Date: 9/9/2014.

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions $(e^x, \sin, \cos, \log, ...)$ as long as everything is well-defined.

(beware especially of division by zero)

(1) Evaluate using the limit laws: (a) $\lim_{x\to 2} \frac{x+1}{4x^2-1}$

(b) $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$.

(2) Evaluate: (a) $\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$.

(b) $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$.

(c) Suppose that $1 \le f(x) \le (x^2 - 2x + 2)$ for all x. Find $\lim_{x \to 1} f(x)$.