
Math 539: Problem Set 1 (due 29/1/2014)

1. (The standard divisor bound)
(a) Let f (n) be multiplicative, and suppose that f → 0 along prime powers – that is, for every

ε > 0 there is N such that if pm > N then | f (pm)| ≤ ε . Show that limn→∞ f (n) = 0.
(b) Show that for all ε > 0, d(n) = O(nε).

2. Establish the following identities in the ring of formal Dirichlet series
(a) Let dk(n) = ∑

∏
k
i=1 ai=n 1 be the generalized divisor functions, counting factorizations of n

into k parts (so d2(n) = d(n) is the usual divisor function). Show ∑n dk(n)n−s = (ζ (s))k

and that dk ∗dl = dk+l .
(b) Define d1/2(n). Calculate d1/2(p), d1/2(12).
(c) Let σα(n)=∑d|n dα be the generalized sum-of-divisors function. Show that ∑

∞
n=1 σα(n)n−s =

ζ (s)ζ (s−α).
(d) Show that ∑n≥1 d(n2)n−s = ζ (s)3

ζ (2s) .
3. Let Dϕ(s) = ∑n≥1 ϕ(n)n−s.

(a) Represent the series in terms of ζ (s) formally.
(b) Show the series converges absolutely for ℜ(s)> 2.
(c) Show that the series failes to converge at s = 2.

4. Recall the function Li(x) =
∫ x

2
dt

log t .

(a) (“Asymptotic expansion”) Show that for fixed K, Li(x)=∑
K
k=1(k−1)! x

logk x
+OK

(
x

logK+1 x

)
.

(b) (Asymptotic expansions are not series expansions) Show that ∑
∞
k=1(k−1)! x

logk x
diverges.

(c) Use summation by parts to estimate π(x) = ∑p≤x 1 using the known asymptotics for

∑p≤x
1
p . Can you show π(x)� Li(x)? π(x)� Li(x)? That π(x)

Li(x) = 1+o(1)?

NOTATION f = Θ(g) means f = O(g) and g = O( f ), that is 0 ≤ 1
C f (x) ≤ g(x) ≤C f (x) for

all large enough x.
(d) Deduce π(x) = Θ(Li(x)) from Chebychev’s estimate ψ(x) = Θ(x).

5. (Chebychev’s lower bound) Let θ(x) = ∑p≤x log p. We will find an explicit c > 0 such that
θ(x)≥ cx for x≥ 2.
(a) Let vp(n) denote the number of times p divides n. Show that vp(n!) = ∑

∞
k=1

⌊
n
pk

⌋
.

(b) Show that if n < p≤ 2n then vp

((2n
n

))
= 1.

(c) (main saving) Show that if 2
3n < p≤ n then vp

((2n
n

))
= 0 unless n = p = 2.

(d) Show that if
√

2n < p≤ n then vp

((2n
n

))
≤ 1.

(e) Show that vp

((2n
n

))
≤ logp 2n.

(f) Show that log
(2n

n

)
− (θ(2n)−θ(n))≤ θ

(2n
3

)
+2
√

2n log(2n).
(g) Find a constant c > 0 such that θ(x)≥ cx for 2 ≤ x ≤ 4 and such that if θ(x)≥ cx for all

2≤ x≤ X then θ(x)≥ cx for X < x≤ 2X .
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6. Notation: f (x) = o(g(x)) (“little oh”) if limx→∞
| f (x)|
g(x) = 0.

(a) Show ∏p

(
1− 1

p

)
e

1
p converges.

(b) Show that ∏p≤z

(
1− 1

p

)
= C(1+o(1))

logz .

7. Let σ > 0
(a) Show that ∏p≤x(1+ p−σ )≤ exp

(
O(x1−σ/ logx)

)
.

(b) Let ap ∈C satisfy
∣∣ap
∣∣≤ p−σ . Show that f (n)=∏p|n (1+ap)≤ exp

(
O
(
(log1−σ n)(log logn)−1)).

(c) Show that ∑n≤x f (n) = cx+O(x1−σ ) where c = ∏p

(
1+ ap

p

)
.

8. LetAn denote a set of representative for the isomorphism classes of abelian groups of order n,
An = #An the number of isomorphism classes.
(a) Show that ∑n≥1 Ann−s = ∏

∞
k=1 ζ (ks) in the ring of formal Dirichlet series.

(b) Show that ∑n≤x An = cx+O
(

x1/2
)

where c = ∏
∞
k=2 ζ (k).

9. Let A⊂ N. We define its lower and upper natural densities by

d = liminf
N→∞

1
N ∑

n≤N
A(n) , d̄ = limsup

N→∞

1
N ∑

n≤N
A(n) .

If the two are equal the limit exists and we call it the natural density of A. Similarly, the lower
and upper logarithmic densities are

δ = liminf
N→∞

1
logN ∑

n≤N

A(n)
n

, δ̄ = limsup
N→∞

1
logN ∑

n≤N

A(n)
n

,

and a set has a logarithmic density if it lower and upper densities agree.
(a) Show that 0 ≤ d ≤ δ ≤ δ̄ ≤ d̄ ≤ 1 for all A. Conclude that if A has natural density it has

logarithmic density and the two are equal.
(b) Let A be the set of integers whose most significant digit is 4. Compute the lower and upper

natural and logarithmic densities of A. Does it have natural density? Logarithmic density?

Hint for 4(a): Repeatedly integrate by parts, and for the error estimate effectuate the mantra “log
is a constant function” by breaking the interval of integration in two.
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Supplementary problems

A. Give the ring of formal Dirichlet series the ultrametric topology. In other words, say that
Dn(s)→ D(s) if each coefficient eventually stabilizes. This allows us to define products of
Dirichlet series.
(a) Let G(T ) = ∑

∞
n=0 anT n ∈C[[T ]] be a formal power series, and let f be an arithmetic func-

tion with f (1) = 0. Show that G(D f ) = ∑
∞
n=0 an

(
D f (s)

)n is a convergent series in the ring
of formal Dirichlet series.

(b) Let D(s) = ∑n≥1 bnn−s be a formal Dirichlet series with b1 = 1. Realize logD(s) as a
formal Dirichlet series without constant term, and show that explogD(s) = D(s).

(c) If f is multiplicative then ∑n≥1 f (n)n−s =∏p (∑
∞
m=0 f (pm)p−s), in the sense that the prod-

uct on the right converges in the ultrametric topology.
(d) (The complex topology is different) Give a multiplicative function f and a number s such

that ∏p (1+ |∑∞
m=1 f (pm)p−s|) converges but ∑n≥1 f (n)n−s does not.

B. For each z ∈C define a multiplicative function dz(n) giving a natural generalization of dk, and
satisfying dz ∗dw = dz+w. Evaluate dz(p), dz(pk), dz(360).

[Note for the future: problem on sum-free sets]
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