Math 539: Problem Set 0 (due 15/1/2013)

Real analysis

- 1. Some asymptotics
 - (a) Let f, g be functions such that f(x), g(x) > 2 for x large enough. Show that $f \ll g$ implies $\log f \ll \log g$. Give a counterexample under the weaker hypothesis f(x), g(x) > 1.
 - (b) For all A > 0, 0 < b < 1 and $\varepsilon > 0$ show that for $x \ge 1$,

$$\log^A x \ll \exp\left(\log^b x\right) \ll x^{\varepsilon}.$$

2. Set $\log_1 x = \log x$ and for x large enough, $\log_{k+1} x = \log(\log_k x)$. Fix $\varepsilon > 0$.

(PRAC) Find the interval of definition of $\log_k x$. For the rest of the problem we suppose that

- $log_k x is defined at N.$ (a) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log_2 n \cdots \log_{k-1} n (\log_k n)^{1+\varepsilon}}$ converges. (b) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log_2 n \cdots \log_{k-1} n (\log_k n)^{1-\varepsilon}}$ diverges.
- 3. (Stirling's formula)
 - (a) Show that $\int_{k-1/2}^{k+1/2} \log t \, dt \log k = O(\frac{1}{k^2}).$
 - (b) Show that there is a constant C such that

$$\log(n!) = \sum_{k=1}^{n} \log k = \left(n + \frac{1}{2}\right) \log n - n + C + O\left(\frac{1}{n}\right).$$

RMK $C = \frac{1}{2}\log(2\pi)$, but this is largely irrelevant.

- 4. Let $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be sequences with partial sums $A_n = \sum_{k=1}^n a_k, B_n = \sum_{k=1}^n b_k$.

 - (a) (Abel summation formula) $\sum_{n=1}^{N} a_n b_n = A_N b_N \sum_{n=1}^{N-1} A_n (b_{n+1} b_n)$ (Summation by parts formula) Show that $\sum_{n=1}^{N} a_n B_n = A_N B_N \sum_{n=1}^{N-1} A_n b_{n+1}$. (b) (Dirichlet's criterion) Suppose that $\{A_n\}_{n=1}^{\infty}$ are uniformly bounded and that $b_n \in \mathbb{R}_{>0}$ decrease monotonically to zero. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges.

Supplementary problem: Review of Arithmetic functions

A.

(a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a commutative ring. The identity element is the function $\delta(n) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$.

- (b) f is invertible in this ring iff f(1) is invertible in \mathbb{C} .
- (c) If f, g are multiplicative so is f * g.
- DEF I(n) = 1, N(n) = n, $\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$, $\mu(n) = (-1)^r$ if *n* is a product of $r \ge 0$ distinct primes, $\mu(n) = 0$ otherwise (i.e. if *n* is divisible by some p^2).
- (d) Show that $I * \mu = \delta$ by explicitly evaluating the convolution at $n = p^m$ and using (c).
- (e) Show that $\varphi * I = N$: (i) by explcitly evaluating the convolution at $n = p^m$ and using (c); (ii) by a combinatorial argument.

Supplementary problems: the Mellin transform and the Gamma function

For a function ϕ on $(0,\infty)$ its *Mellin transform* is given by $\mathcal{M}\phi(s) = \int_0^\infty \phi(x) x^s \frac{dx}{x}$ whenver the integral converges absolutely.

- B. Let ϕ be a bounded measurable function on $(0, \infty)$.
 - (a) Suppose that for some $\alpha > 0$ we have $\phi(x) = O(x^{-\alpha})$ as $x \to \infty$. Show that the $\mathcal{M}\phi$ defines a holomorphic function in the strip $0 < \Re(s) < \alpha$.
 - For the rest of the problem assume that $\phi(x) = O(x^{-\alpha})$ holds for all $\alpha > 0$.
 - (b) Suppose that ϕ is smooth in some interval [0,b] (that is, there b > 0 and is a function $\psi \in C^{\infty}([0,b])$ such that $\psi(x) = \phi(x)$ with $0 < x \le b$. Show that $\tilde{\phi}(s)$ extends to a meromorphic function in \mathbb{C} , with at most simple poles at $-m, m \in \mathbb{Z}_{>0}$ where the residues are $\frac{\phi^{(m)}(0)}{m!}$ (in particular, if this derivative vanishes there is no pole). (c) Extend the result of (b) to ϕ such that $\phi(x) - \sum_{i=1}^{r} \frac{a_i}{x^i}$ is smooth in an interval [0, b].

 - (d) Let $\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}$. Show that $\Gamma(s)$ extends to a meromorphic function in *C* with simple poles at $\mathbb{Z}_{\leq 0}$ where the residues are 1.
- C. (The Gamma function) Let $\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}$, defined initially for $\Re(s) > 0$.
 - FACT A standard integration by parts shows that $s\Gamma(s) = \Gamma(s+1)$ and hence $\Gamma(n) = (n-1)!$ for $n \in \mathbb{Z}_{>1}$.
 - (a) Let $Q_N(s) = \int_0^N \left(1 \frac{x}{N}\right)^N x^s \frac{dx}{x}$. Show that $Q_N(s) = \frac{N!}{s(s+1)\cdots(s+N)} N^s$. Show that $0 \le \left(1 \frac{x}{N}\right)^N \le e^{-x}$ holds for $0 \le x \le N$, and conclude that $\lim_{N \to \infty} \frac{N!}{s(s+1)\cdots(s+N)} N^s = \Gamma(s)$ for on $\Re s > 0$ (for a quantitative argument show instead $0 \le e^{-x} - \left(1 - \frac{x}{N}\right)^N \le \frac{x^2}{N}e^{-x}$)
 - (b) Define $f(s) = se^{\gamma s} \prod_{n=1}^{\infty} (1 + \frac{s}{n}) e^{-s/n}$ where $\gamma = \lim_{n \to \infty} (\sum_{i=1}^{n} \frac{1}{i} \log n)$ is Euler's constant. Show that the product converges locally uniformly absolutely and hence defines an entire function in the complex plane, with zeros at $\mathbb{Z}_{\leq 0}$. Show that $f(s+1) = \frac{1}{s}f(s)$.
 - (c) Let $P_N(s) = se^{\gamma s} \prod_{n=1}^N \left(1 + \frac{s}{n}\right) e^{-s/n}$. Show that for $\alpha \in (0, \infty)$, $\lim_{N \to \infty} Q_N(\alpha) P_N(\alpha) = 1$ and conclude (without using problem B) that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$, that $\Gamma(s) \neq 0$ for all $s \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ and that the Weierstraß product representation

$$\Gamma(s) = \frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right)^{-1} e^{s/n}$$

holds.

(d) Let $F(s) = \frac{\Gamma'(s)}{\Gamma(s)}$ be the Digamma function. Using the Euler–Maclaurin summation formula $\sum_{n=0}^{n=N} f(n) = \int_0^N f(x) \, dx + \frac{1}{2} \left(f(0) + f(N) \right) + \frac{1}{12} \left(f'(0) - f'(N) \right) + R$, with $|R| \le \frac{1}{12} \int_0^N |f''(x)| \, dx$, show that if $|s| > \delta$ and $-\pi + \delta \le \arg(s) \le \pi + \delta$ then

$$F(s) = \log s - \frac{1}{2s} + O_{\delta}\left(|s|^{-2}\right).$$

Integrating on an appropriate contour, obtain Stirling's Approximation: there is a constant c such that for $\mathfrak{a}_{\mathbb{R}}^*(s)$ in the given range,

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + c + O_{\delta}\left(\frac{1}{|s|}\right)$$

(e) Show Euler's reflection formula

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

Conclude that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and hence that $\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$.

- (f) Setting $s = \frac{1}{2} + it$ in the reflection formula and letting $t \to \infty$, show that $c = \frac{1}{2}\log(2\pi)$ in Stirling's Approximation.
- (g) Show Legendre's duplication formula

$$\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2}) = \sqrt{\pi}2^{1-s}\Gamma(s).$$