Math 539: Problem Set 0 (due 15/1/2013)

Real analysis

1. Some asymptotics
(a) Let f, g be functions such that $f(x), g(x)>2$ for x large enough. Show that $f \ll g$ implies $\log f \ll \log g$. Give a counterexample under the weaker hypothesis $f(x), g(x)>1$.
(b) For all $A>0,0<b<1$ and $\varepsilon>0$ show that for $x \geq 1$,

$$
\log ^{A} x \ll \exp \left(\log ^{b} x\right) \ll x^{\varepsilon}
$$

2. Set $\log _{1} x=\log x$ and for x large enough, $\log _{k+1} x=\log \left(\log _{k} x\right)$. Fix $\varepsilon>0$.
(PRAC) Find the interval of definition of $\log _{k} x$. For the rest of the problem we suppose that $\log _{k} x$ is defined at N.
(a) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log _{2} n \cdots \log _{k-1} n\left(\log _{k} n\right)^{1+\varepsilon}}$ converges.
(b) Show that $\sum_{n=N}^{\infty} \frac{1}{n \log n \log _{2} n \cdots \log _{k-1} n\left(\log _{k} n\right)^{1-\varepsilon}}$ diverges.
3. (Stirling's formula)
(a) Show that $\int_{k-1 / 2}^{k+1 / 2} \log t \mathrm{~d} t-\log k=O\left(\frac{1}{k^{2}}\right)$.
(b) Show that there is a constant C such that

$$
\log (n!)=\sum_{k=1}^{n} \log k=\left(n+\frac{1}{2}\right) \log n-n+C+O\left(\frac{1}{n}\right)
$$

RMK $C=\frac{1}{2} \log (2 \pi)$, but this is largely irrelevant.
4. Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ be sequences with partial sums $A_{n}=\sum_{k=1}^{n} a_{k}, B_{n}=\sum_{k=1}^{n} b_{k}$.
(a) (Abel summation formula) $\sum_{n=1}^{N} a_{n} b_{n}=A_{N} b_{N}-\sum_{n=1}^{N-1} A_{n}\left(b_{n+1}-b_{n}\right)$

- (Summation by parts formula) Show that $\sum_{n=1}^{N} a_{n} B_{n}=A_{N} B_{N}-\sum_{n=1}^{N-1} A_{n} b_{n+1}$.
(b) (Dirichlet's criterion) Suppose that $\left\{A_{n}\right\}_{n=1}^{\infty}$ are uniformly bounded and that $b_{n} \in \mathbb{R}_{>0}$ decrease monotonically to zero. Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

Supplementary problem: Review of Arithmetic functions

A.
(a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a commutative ring. The identity element is the function $\delta(n)=\left\{\begin{array}{ll}1 & n=1 \\ 0 & n>1\end{array}\right.$.
(b) f is invertible in this ring iff $f(1)$ is invertible in \mathbb{C}.
(c) If f, g are multiplicative so is $f * g$.

DEF $I(n)=1, N(n)=n, \varphi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|, \mu(n)=(-1)^{r}$ if n is a product of $r \geq 0$ distinct primes, $\mu(n)=0$ otherwise (i.e. if n is divisible by some p^{2}).
(d) Show that $I * \mu=\delta$ by explicitly evaluating the convolution at $n=p^{m}$ and using (c).
(e) Show that $\varphi * I=N$: (i) by explcitly evaluating the convolution at $n=p^{m}$ and using (c); (ii) by a combinatorial argument.

Supplementary problems: the Mellin transform and the Gamma function

For a function ϕ on $(0, \infty)$ its Mellin transform is given by $\mathcal{M} \phi(s)=\int_{0}^{\infty} \phi(x) x^{s} \frac{\mathrm{~d} x}{x}$ whenver the integral converges absolutely.
B. Let ϕ be a bounded measurable function on $(0, \infty)$.
(a) Suppose that for some $\alpha>0$ we have $\phi(x)=O\left(x^{-\alpha}\right)$ as $x \rightarrow \infty$. Show that the $\mathcal{M} \phi$ defines a holomorphic function in the strip $0<\Re(s)<\alpha$.
For the rest of the problem assume that $\phi(x)=O\left(x^{-\alpha}\right)$ holds for all $\alpha>0$.
(b) Suppose that ϕ is smooth in some interval $[0, b]$ (that is, there $b>0$ and is a function $\psi \in C^{\infty}([0, b])$ such that $\psi(x)=\phi(x)$ with $\left.0<x \leq b\right)$. Show that $\tilde{\phi}(s)$ extends to a meromorphic function in \mathbb{C}, with at most simple poles at $-m, m \in \mathbb{Z}_{\geq 0}$ where the residues are $\frac{\phi^{(m)}(0)}{m!}$ (in particular, if this derivative vanishes there is no pole).
(c) Extend the result of (b) to ϕ such that $\phi(x)-\sum_{i=1}^{r} \frac{a_{i}}{x^{i}}$ is smooth in an interval $[0, b]$.
(d) Let $\Gamma(s)=\int_{0}^{\infty} e^{-t} t \frac{s}{t} t$. Show that $\Gamma(s)$ extends to a meromorphic function in C with simple poles at $\mathbb{Z}_{\leq 0}$ where the residues are 1 .
C. (The Gamma function) Let $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{\mathrm{~d} t}{t}$, defined initially for $\mathfrak{R}(s)>0$.

FACT A standard integration by parts shows that $s \Gamma(s)=\Gamma(s+1)$ and hence $\Gamma(n)=(n-1)$! for $n \in \mathbb{Z}_{\geq 1}$.
(a) Let $Q_{N}(s)=\int_{0}^{N}\left(1-\frac{x}{N}\right)^{N} x^{s} \frac{\mathrm{~d} x}{x}$. Show that $Q_{N}(s)=\frac{N!}{s(s+1) \cdots(s+N)} N^{s}$. Show that $0 \leq\left(1-\frac{x}{N}\right)^{N} \leq$ e^{-x} holds for $0 \leq x \leq N$, and conclude that $\lim _{N \rightarrow \infty} \frac{N!}{s(s+1) \cdots(s+N)} N^{s}=\Gamma(s)$ for on $\Re s>0$ (for a quantitative argument show instead $0 \leq e^{-x}-\left(1-\frac{x}{N}\right)^{N} \leq \frac{x^{2}}{N} e^{-x}$)
(b) Define $f(s)=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}$ where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \frac{1}{i}-\log n\right)$ is Euler's constant. Show that the product converges locally uniformly absolutely and hence defines an entire function in the complex plane, with zeros at $\mathbb{Z}_{\leq 0}$. Show that $f(s+1)=\frac{1}{s} f(s)$.
(c) Let $P_{N}(s)=s e^{\gamma s} \prod_{n=1}^{N}\left(1+\frac{s}{n}\right) e^{-s / n}$. Show that for $\alpha \in(0, \infty), \lim _{N \rightarrow \infty} Q_{N}(\alpha) P_{N}(\alpha)=1$ and conclude (without using problem B) that $\Gamma(s)$ extends to a meromorphic function in \mathbb{C} with simple poles at $\mathbb{Z}_{\leq 0}$, that $\Gamma(s) \neq 0$ for all $s \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ and that the Weierstraß product representation

$$
\Gamma(s)=\frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right)^{-1} e^{s / n}
$$

holds.
(d) Let $\digamma(s)=\frac{\Gamma^{\prime}(s)}{\Gamma(s)}$ be the Digamma function. Using the Euler-Maclaurin summation formula $\sum_{n=0}^{n=N} f(n)=\int_{0}^{N} f(x) \mathrm{d} x+\frac{1}{2}(f(0)+f(N))+\frac{1}{12}\left(f^{\prime}(0)-f^{\prime}(N)\right)+R$, with $|R| \leq \frac{1}{12} \int_{0}^{N}\left|f^{\prime \prime}(x)\right| \mathrm{d} x$, show that if $|s|>\delta$ and $-\pi+\delta \leq \arg (s) \leq \pi+\delta$ then

$$
\digamma(s)=\log s-\frac{1}{2 s}+O_{\delta}\left(|s|^{-2}\right)
$$

Integrating on an appropriate contour, obtain Stirling's Approximation: there is a constant c such that for $\mathfrak{a}_{\mathbb{R}}^{*}(s)$ in the given range,

$$
\log \Gamma(s)=\left(s-\frac{1}{2}\right) \log s-s+c+O_{\delta}\left(\frac{1}{|s|}\right) .
$$

(e) Show Euler's reflection formula

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

Conclude that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and hence that $\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{\alpha}}$.
(f) Setting $s=\frac{1}{2}+$ it in the reflection formula and letting $t \rightarrow \infty$, show that $c=\frac{1}{2} \log (2 \pi)$ in Stirling's Approximation.
(g) Show Legendre's duplication formula

$$
\Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)=\sqrt{\pi} 2^{1-s} \Gamma(s) .
$$

