Math 412: Problem set 10, due 7/4/2014

Differenetial Equations

1. We will analyze the differential equation $u^{\prime \prime}=-u$ with initial data $u(0)=u_{0}, u^{\prime}(0)=u_{1}$.
(a) Let $\underline{v}(t)=\binom{u(t)}{u^{\prime}(t)}$. Show that u is a solution to the equation iff \underline{v} solves

$$
\underline{v}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \underline{v}(t)
$$

(b) Let $W=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Find formulas for W^{n} and $\operatorname{express} \exp (W t)=\sum_{k=0}^{\infty} \frac{W^{k} t^{k}}{k!}$ as a matrix whose entries are standard power series.
(c) Show that $u(t)=u_{0} \cos (t)+u_{1} \sin (t)$.
(d) Find a matrix S such that $W=S\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right) S^{-1}$. Evaluate $\exp (W t)$ again, this time using $\exp (W t)=S\left(\exp \left(\begin{array}{cc}i t & 0 \\ 0 & -i t\end{array}\right)\right) S^{-1}$.
2. Consider the differential equation $\frac{\mathrm{d}}{\mathrm{d} t} \underline{v}=B \underline{v}$ where B is at in PS7 problem 1.
(a) Find matrices S, D so that D is in Jordan form, and such that $B=S D S^{-1}$.
(b) Find $\exp (t D)$ directly (as in $1(b))$.
(c) Find the solution such that $\underline{v}(0)=\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)^{t}$.

Power series

3. Products of absolutely convergent series.
(a) Let V be a normed space, and let $T, S \in \operatorname{End}_{\mathrm{b}}(V)$ commute. Show that $\exp (T+S)=$ $\exp (T) \exp (S)$.
(b) Show that, for appropriate values of $t, \exp (A) \exp (B) \neq \exp (A+B)$ where $A=\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)$, $B=\left(\begin{array}{cc}0 & 0 \\ -t & 0\end{array}\right)$.

Companion matrices

PRAC Find the Jordan canonical form of $\left(\begin{array}{lll}1 & \\ & & 1 \\ 0 & 0 & 2\end{array}\right)$.
4. Let $C=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \\ a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1}\end{array}\right)$
be the companion matrix associated with the polyno-
mial $p(x)=x^{n}-\sum_{k=0}^{n-1} a_{k} x^{k}$.
(a) Show that $p(x)$ is, indeed, the characteristic polynomial of C.

- For parts (b),(c) fix a non-zero root λ of $p(x)$.
(b) Find (with proof) an eigenvector with eigenvalue λ.
$(* * \mathrm{c})$ Let g be a polynomial, and let \underline{v} be the vector with entries $v_{k}=\lambda^{k} g(k)$ for $0 \leq k \leq n-1$. Show that, if the degree of g is small enough (depending on p, λ), then $((C-\lambda) \underline{v})_{k}=$ $\lambda(g(k+1)-g(k)) \lambda^{k}$ and (the hard part) that

$$
((C-\lambda) \underline{v})_{n-1}=\lambda(g(n)-g(n-1)) \lambda^{n-1} .
$$

$(* * \mathrm{~d})$ Find the Jordan canonical form of C.

Holomorphic calculus

Let $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ be a power series with radius of convergence R. For a matrix A define $f(A)=\sum_{m=0}^{\infty} a_{m} A^{m}$ if the series converges absolutely in some matrix norm.
5. Let $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ be diagonal with $\rho(D)<R$ (that is, $\left|\lambda_{i}\right|<R$ for each i). Show that $f(D)=\operatorname{diag}\left(f\left(\lambda_{1}\right), \cdots, f\left(\lambda_{n}\right)\right)$.
6. Let $A \in M_{n}(\mathbb{C})$ be a matrix with $\rho(A)<R$.
(a) [review of power series] Choose R^{\prime} such that $\rho(A)<R^{\prime}<R$. Show that $\left|a_{m}\right| \leq C\left(R^{\prime}\right)^{-m}$ for some $C>0$.
(b) Using PS8 problem 3(a) show that $f(A)$ converges absolutely with respect to any matrix norm.
(*c) Suppose that $A=S(D+N) S^{-1}$ where $D+N$ is the Jordan form (D is diagonal, N uppertriangular nilpotent). Show that

$$
f(A)=S\left(\sum_{k=0}^{n} \frac{f^{(k)}(D)}{k!} N^{k}\right) S^{-1} .
$$

Hint: D, N commute.
RMK1 This gives an alternative proof that $f(A)$ converges absolutely if $\rho(A)<R$, using the fact that $f^{(k)}(D)$ can be analyzed using single-variable methods.
RMK2 Compare your answer with the Taylor expansion $f(x+y)=\sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} y^{k}$.
(d) Apply this formula to find $\exp (t B)$ where B is as in problem 2.

