Math 412: Problem set 10, due 7/4/2014

Differenctial Equations

- 1. We will analyze the differential equation u'' = -u with initial data $u(0) = u_0, u'(0) = u_1$.
 - (a) Let $\underline{v}(t) = \begin{pmatrix} u(t) \\ u'(t) \end{pmatrix}$. Show that *u* is a solution to the equation iff \underline{v} solves

$$\underline{v}'(t) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \underline{v}(t)$$

- (b) Let $W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Find formulas for W^n and express $\exp(Wt) = \sum_{k=0}^{\infty} \frac{W^k t^k}{k!}$ as a matrix whose entries are standard power series.
- (c) Show that $u(t) = u_0 \cos(t) + u_1 \sin(t)$.
- (d) Find a matrix S such that $W = S \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} S^{-1}$. Evaluate $\exp(Wt)$ again, this time using $\exp(Wt) = S \left(\exp \begin{pmatrix} it & 0 \\ 0 & -it \end{pmatrix} \right) S^{-1}$.
- 2. Consider the differential equation $\frac{d}{dt} \underline{v} = B\underline{v}$ where *B* is at in PS7 problem 1.
 - (a) Find matrices S, D so that D is in Jordan form, and such that $B = SDS^{-1}$.
 - (b) Find $\exp(tD)$ directly (as in 1(b)).
 - (c) Find the solution such that $\underline{v}(0) = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix}^{t}$.

Power series

- 3. Products of absolutely convergent series.
 - (a) Let V be a normed space, and let $T, S \in \text{End}_b(V)$ commute. Show that $\exp(T+S) = \exp(T)\exp(S)$.
 - (b) Show that, for appropriate values of t, $\exp(A)\exp(B) \neq \exp(A+B)$ where $A = \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}$,

$$B = \begin{pmatrix} 0 & 0 \\ -t & 0 \end{pmatrix}.$$

Companion matrices

PRAC Find the Jordan canonical form of
$$\begin{pmatrix} 1 & \\ & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.
4. Let $C = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}$ be the companies mial $p(x) = x^n - \sum_{k=0}^{n-1} a_k x^k$.

on matrix associated with the polyno-

- (a) Show that p(x) is, indeed, the characteristic polynomial of C.
- For parts (b),(c) fix a non-zero root λ of p(x).
- (b) Find (with proof) an eigenvector with eigenvalue λ .
- (**c) Let g be a polynomial, and let <u>v</u> be the vector with entries $v_k = \lambda^k g(k)$ for $0 \le k \le n-1$. Show that, if the degree of g is small enough (depending on p, λ), then $((\overline{C} - \overline{\lambda})\underline{v})_k =$ $\lambda (g(k+1) - g(k)) \lambda^k$ and (the hard part) that

$$\left((C-\lambda)\underline{v}\right)_{n-1} = \lambda \left(g(n) - g(n-1)\right) \lambda^{n-1}.$$

(**d) Find the Jordan canonical form of *C*.

Holomorphic calculus

Let $f(z) = \sum_{m=0}^{\infty} a_m z^m$ be a power series with radius of convergence *R*. For a matrix *A* define $f(A) = \sum_{m=0}^{\infty} a_m A^m$ if the series converges absolutely in some matrix norm.

- 5. Let $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ be diagonal with $\rho(D) < R$ (that is, $|\lambda_i| < R$ for each *i*). Show that $f(D) = \operatorname{diag}(f(\lambda_1), \cdots, f(\lambda_n)).$
- 6. Let $A \in M_n(\mathbb{C})$ be a matrix with $\rho(A) < R$.
 - (a) [review of power series] Choose R' such that $\rho(A) < R' < R$. Show that $|a_m| \le C(R')^{-m}$ for some C > 0.
 - (b) Using PS8 problem 3(a) show that f(A) converges absolutely with respect to any matrix norm.
 - (*c) Suppose that $A = S(D+N)S^{-1}$ where D+N is the Jordan form (D is diagonal, N uppertriangular nilpotent). Show that

$$f(A) = S\left(\sum_{k=0}^{n} \frac{f^{(k)}(D)}{k!} N^{k}\right) S^{-1}.$$

Hint: D,N commute.

RMK1 This gives an alternative proof that f(A) converges absolutely if $\rho(A) < R$, using the fact that $f^{(k)}(D)$ can be analyzed using single-variable methods.

RMK2 Compare your answer with the Taylor expansion $f(x+y) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} y^k$. (d) Apply this formula to find $\exp(tB)$ where *B* is as in problem 2.