Math 412: Problem set 9, due 26/3/2014

- 1. Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Let $\underline{\nu}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Find S invertible and D diagonal such that $A = S^{-1}DS$.
 - Prove for yourself the formula $A^k = S^{-1}D^kS$.

 - (b) Find a formula for $\underline{v}_k = A^k \underline{v}_0$, and show that $\frac{\underline{v}_k}{\|\underline{v}_k\|}$ converges for any norm on \mathbb{R}^2 . RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real number $\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^n$ is exponentially close to being an integer. RMK This idea can solve any *difference equation*. We will also apply this to solving *differen*-
 - *tial* equations.

2. Let
$$A = \begin{pmatrix} z & 1 \\ 0 & z \end{pmatrix}$$
 with $z \in \mathbb{C}$.

- (a) Find (and prove) a simple formula for the entries of A^n .
- (b) Use your formula to decide the set of z for which $\sum_{n=0}^{\infty} A^n$ converge, and give a formula for the sum.
- (c) Show that the sum is $(Id A)^{-1}$ when the series converges.
- 3. For each *n* construct a projection $E_n \colon \mathbb{R}^2 \to \mathbb{R}^2$ of norm at least *n* (\mathbb{R}^n is equipped with the Euclidean norm unless specified otherwise).

RMK Prove for yourself that the norm of an *orthogonal* projection is 1.

Supplementary problems

- A. Consider the map Tr: $M_n(F) \to F$.
 - (a) Show that this is a continuous map.
 - (b) Find the norm of this map when $M_n(F)$ is equipped with the $L^1 \to L^1$ operator norm (see PS8 Problem 2(a)).
 - (c) Find the norm of this map when $M_n(F)$ is equipped with the Hilbert–Schmidt norm (see PS8 Problem 4).
 - (*d) Find the norm of this map when $M_n(F)$ is equipped with the $L^p \to L^p$ operator norm. Find the matrices A with operator norm 1 and trace maximal in absolute value.
- B. Call $T \in \text{End}_F(V)$ bounded below if there is K > 0 such that $||T\underline{v}|| \ge K ||\underline{v}||$ for all $\underline{v} \in V$. (a) Let T be bounded below. Show that T is invertible, and that $\overline{T^{-1}}$ is a bounded operator.

 - (*b) Suppose that V is finite-dimensional. Show that every invertible map is bounded below.