Math 412: Problem set 9, due 26/3/2014

1. Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Let $\underline{v}_{0}=\binom{0}{1}$.
(a) Find S invertible and D diagonal such that $A=S^{-1} D S$.

- Prove for yourself the formula $A^{k}=S^{-1} D^{k} S$.
(b) Find a formula for $\underline{v}_{k}=A^{k} \underline{v}_{0}$, and show that $\frac{\underline{v}_{k}}{\left\|\underline{v}_{k}\right\|}$ converges for any norm on \mathbb{R}^{2}.

RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real number $\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ is exponentially close to being an integer.
RMK This idea can solve any difference equation. We will also apply this to solving differential equations.
2. Let $A=\left(\begin{array}{ll}z & 1 \\ 0 & z\end{array}\right)$ with $z \in \mathbb{C}$.
(a) Find (and prove) a simple formula for the entries of A^{n}.
(b) Use your formula to decide the set of z for which $\sum_{n=0}^{\infty} A^{n}$ converge, and give a formula for the sum.
(c) Show that the sum is $(\operatorname{Id}-A)^{-1}$ when the series converges.
3. For each n construct a projection $E_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of norm at least $n\left(\mathbb{R}^{n}\right.$ is equipped with the Euclidean norm unless specified otherwise).
RMK Prove for yourself that the norm of an orthogonal projection is 1.

Supplementary problems

A. Consider the map $\operatorname{Tr}: M_{n}(F) \rightarrow F$.
(a) Show that this is a continuous map.
(b) Find the norm of this map when $M_{n}(F)$ is equipped with the $L^{1} \rightarrow L^{1}$ operator norm (see PS8 Problem 2(a)).
(c) Find the norm of this map when $M_{n}(F)$ is equipped with the Hilbert-Schmidt norm (see PS8 Problem 4).
$\left({ }^{*} \mathrm{~d}\right)$ Find the norm of this map when $M_{n}(F)$ is equipped with the $L^{p} \rightarrow L^{p}$ operator norm. Find the matrices A with operator norm 1 and trace maximal in absolute value.
B. Call $T \in \operatorname{End}_{F}(V)$ bounded below if there is $K>0$ such that $\|T \underline{v}\| \geq K\|\underline{v}\|$ for all $\underline{v} \in V$.
(a) Let T be boudned below. Show that T is invertible, and that T^{-1} is a bounded operator.
(*b) Suppose that V is finite-dimensional. Show that every invertible map is bounded below.

