Math 412: Problem set 8, due 17/3/2014

Practice: Norms

P1. Call two norms $\|\cdot\|_1$, $\|\cdot\|_2$ on *V* equivalent if there are constants *c*, *C* such that for all $\underline{v} \in V$,

$$c \|\underline{v}\|_1 \le \|\underline{v}\|_2 \le C \|\underline{v}\|_1.$$

- (a) Show that this is an equivalence relation.
- (b) Suppose the two norms are equivalent and that $\lim_{n\to\infty} \|\underline{v}_n\|_1 = 0$ (that is, that $\underline{v}_n \xrightarrow{\|\cdot\|_1}{n\to\infty} \underline{0}$).

Show that $\lim_{n\to\infty} ||\underline{v}_n||_2 = 0$ (that is, that $\underline{v}_n \xrightarrow[n\to\infty]{} \underline{0}$).

- (**c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they determine the same notion of convergence.
- P2. Constructions

(a) Let $\{(V_i, \|\cdot\|_i)\}_{i=1}^n$ be normed spaces, and let $1 \le p \le \infty$. For $\underline{v} = (\underline{v}_i) \in \bigoplus_{i=1}^n V_i$ define

$$\|\underline{v}\| = \left(\sum_{i=1}^n \|\underline{v}_i\|_i^p\right)^{1/p}$$

Show that this defines a norm on $\bigoplus_{i=1}^{n} V_i$.

DEF This operation is called the L^{p} -sum of the normed spaces.

- DEF Let $(V, \|\cdot\|)$ be a normed space, and let $W \subset V$ be a subspace. For $\underline{v} + W \in V/W$ set $\|\underline{v} + W\|_{V/W} = \inf \{ \|\underline{v} + \underline{w}\| : \underline{w} \in W \}.$ Show
- (b) Show that $\|\cdot\|_{V/W}$ is 1-homogenous and satisfies the triangle inequality (it's not always a norm because it can be zero for non-zero vectors).

Norms

- 1. Let $f(x) = x^2$ on [-1, 1].

 - (a) For $1 \le p < \infty$. Calculate $||f||_{L^p} = \left(\int_0^1 |f(x)|^p dx\right)^{1/p}$. (b) Calculate $||f||_{L^\infty} = \sup\{|f(x)|: -1 \le x \le 1\}$. Check that $\lim_{p \to \infty} ||f||_{L^p} = ||f||_{\infty}$.
 - (c) Calculate $||f||_{H^2} = \left(||f||_{L^2}^2 + ||f'||_{L^2}^2 + ||f''||_{L^2}^2 \right)^{1/2}$.

SUPP Show that the H^2 norm is equivalent to the norm $\left(\|f\|_{L^2}^2 + \|f''\|_{L^2}^2 \right)^{1/2}$.

- 2. Let $A \in M_n(\mathbb{R})$.
 - (a) Show $\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$ (hint: we basically did this in class).
 - (b) Show that $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$.
 - RMK See below on *duality*.
- 3. The *spectral radius* of $A \in M_n(\mathbb{C})$ is the magnitude of its largest eigenvalue: $\rho(A) = \max\{|\lambda| | \lambda \in \operatorname{Spec}(A)\}$. (a) Show that for any norm $\|\cdot\|$ on F^n and any $A \in M_n(F)$, $\rho(A) \le \|A\|$.
 - (b) Suppose that A is diagonable. Show that there is a norm on F^n such that $||A|| = \rho(A)$.
 - (*c) Show that if *A* is Hermitian then $||A||_2 = \rho(A)$.

- (d) Show that if *A*, *B* are similar, and $\|\cdot\|$ is any norm in \mathbb{C}^n , then $\lim_{n\to\infty} \|A^n\|^{1/n} = \lim_{n\to\infty} \|B^n\|^{1/n}$ (in the sense that, if one limit exists, then so does the other, and they are equal).
- (**e) Show that for any norm on \mathbb{C}^n and any $A \in M_n(\mathbb{C})$, we have $\lim_{n\to\infty} ||A^n||^{1/n} = \rho(A)$.
- 4. The *Hilbert–Schmidt* norm on $M_n(\mathbb{C})$ is $||A||_{\text{HS}} = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{1/2}$.
 - Show that $||A||_{\text{HS}} = (\text{Tr}(A^{\dagger}A))^{1/2}$.
 - (a) Show that this is, indeed, a norm.
 - (b) Show that $||A||_2 \le ||A||_{\text{HS}}$.

Supplementary problems

- A. A *seminorm* on a vector space V is a map $V \to \mathbb{R}_{\geq 0}$ that satisfies all the conditions of a norm except that it can be zero for non-zero vectors.
 - (a) Show that for any $f \in V'$, $\varphi(\underline{v}) = |f(\underline{v})|$ is a seminorm.
 - (b) Construct a seminorm on \mathbb{R}^2 not of this form.
 - (c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that $\overline{\varphi}(\underline{\nu}) = \sup \{\varphi(\underline{\nu}) \mid \varphi \in \Phi\}$ is again a seminorm.
- B. For $\underline{v} \in \mathbb{C}^n$ and $1 \le p \le \infty$ let $\|\underline{v}\|_p$ be as defined in class.
 - (a) For $1 define <math>1 < q < \infty$ by $\frac{1}{p} + \frac{1}{q} = 1$ (also if p = 1 set $q = \infty$ and if $p = \infty$ set q = 1). Given $x \in \mathbb{C}$ let $y(x) = \frac{\bar{x}}{|x|} |x|^{p/q}$ (set y = 0 if x = 0), and given a vector $\underline{x} \in \mathbb{C}^n$ define a vector yanalogously.
 - (i) Show that $\left\|\underline{y}\right\|_q = \left\|\underline{x}\right\|_p^{p/q}$.
 - (ii) Show that $|\sum_{i=1}^{n} x_i y_i| = ||\underline{x}||_p ||\underline{y}||_q$
 - (b) Now let $\underline{u}, \underline{v} \in \mathbb{C}^n$ and let $1 \leq p \leq \infty$. Show that $|\sum_{i=1}^n u_i v_i| \leq ||\underline{u}||_p ||\underline{v}||_q$ (this is called *Hölder's inequality*).
 - (c) Conlude that $\|\underline{u}\|_p = \max \{ |\sum_{i=1}^n u_i v_i| \mid \|\underline{v}\|_q = 1 \}.$
 - (d) Show that $||\underline{u}||_p$ is a norm (hint: A(c)).
 - (e) Show that $\lim_{p\to\infty} \|\underline{v}\|_p = \|\underline{v}\|_{\infty}$ (this is why the supremum norm is usually called the L^{∞} norm).
- C. Let $\{\underline{v}_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a normed space. Show that $\{\|\underline{v}_n\|\}_{n=1}^{\infty} \subset \mathbb{R}_{\geq 0}$ is a Cauchy sequence.
- D. Let X be a set. For $1 \le p < \infty$ set $\ell^p(X) = \{f : X \to \mathbb{C} \mid \sum_{x \in X} |f(x)|^p < \infty\}$, and also set $\ell^{\infty}(X) = \{f : X \to \mathbb{C} \mid f \text{ bounded}\}.$
 - (a) Show that for $f \in \ell^p(X)$ and $g \in \ell^q(X)$ we have $fg \in \ell^1(X)$ and $|\sum_{x \in X} f(x)g(x)| \le ||f||_p ||g||_q$.
 - (b) Show that $\ell^p(X)$ are subspaces of \mathbb{C}^X , and that $||f||_p = (\sum_{x \in X} |f(x)|^p)^{1/p}$ is a norm on $\ell^p(X)$
 - (c) Let $\{f_n\}_{n=1}^{\infty} \subset \ell^p(X)$ be a Cauchy sequence. Show that $\{f_n(x)\}_{n=1}^{\infty} \subset \mathbb{C}$ is a Cauchy sequence.

- (d) Let $\{f_n\}_{n=1}^{\infty} \subset \ell^p(X)$ be a Cauchy sequence and let $f(x) = \lim_{n \to \infty} f_n(x)$. Show that $f \in$ $\ell^p(X).$
- (e) Let $\{f_n\}_{n=1}^{\infty} \subset \ell^p(X)$ be a Cauchy sequence. Show that it is convergent in $\ell^p(X)$.
- E. Let V, W be normed vector spaces, equipped with the metric topology coming from the norm. Let $T \in \text{Hom}_F(V, W)$. Show that the following are equivalent:
 - (1) T is continuous.
 - (2) T is continuous at zero.

(3) *T* is *bounded*: $||T||_{V \to W} < \infty$, that is: for some C > 0 and all $\underline{v} \in V$, $||T\underline{v}||_{W} \le C ||\underline{v}||_{V}$. Hint: the same idea is used in problem P1

- F. Let V, W be normed spaces, and let $Hom_{cts}(V, W)$ be the set of bounded linear maps from V to *W*.
 - (a) Show that the operator norm is a norm on $Hom_{cts}(V, W)$.
 - (b) Suppose that W is complete with respects to its norm. Show that $Hom_{cts}(V, W)$ is also complete.

- DEF The norm on $V^* \stackrel{\text{def}}{=} \operatorname{Hom}_{\operatorname{cts}}(V, F)$ is called the *dual norm*. (c) Let $V = \mathbb{R}^n$ and identify V^* with \mathbb{R}^n via the basis of δ -functions. Show that the norm on V^* dual to the ℓ^1 -norm is the ℓ^{∞} norm and vice versa. Show that the ℓ^2 -norm is self-dual.
- G. (The completion) Let (X, d) be a metric space.
 - (a) Let $\{x_n\}, \{y_n\} \subset X$ be two Cauchy sequences. Show that $\{d(x_n, y_n)\}_{n=1}^{\infty} \subset \mathbb{R}$ is a Cauchy sequence.
 - DEF Let (\tilde{X}, \tilde{d}) denote the set of Cauchy sequences in X with the distance $\tilde{d}(\underline{x}, y) = \lim_{n \to \infty} d(x_n, y_n)$.
 - (b) Show that \tilde{d} satisfies all the axioms of a metric except that it can be non-zero for distinct sequences.
 - (c) Show that the relation $\underline{x} \sim y \iff \tilde{d}(\underline{x}, y) = 0$ is an equivalence relation.
 - (d) Let $\hat{X} = \tilde{X} / \sim$ be the set of equivalence classes. Show that $\tilde{d} \colon \tilde{X} \times \tilde{X} \to \mathbb{R}_{>0}$ descends to a well-defined function $\hat{d}: \hat{X} \times \hat{X} \to \mathbb{R}_{>0}$ which is a metric.
 - (e) Show that (\hat{X}, \hat{d}) is a complete metric space.

DEF For $x \in X$ let $\iota(x) \in \hat{X}$ be the equivalence class of the constant sequence x.

- (f) Show that $\iota: X \to \hat{X}$ is an isometric embedding with dense image.
- (g) (Universal property) Show that for any complete metric space (Y, d_Y) and any uniformly continuous $f: X \to Y$ there is a unique extension $\hat{f}: \hat{X} \to Y$ such that $\hat{f} \circ \iota = f$.
- (h) Show that triples $(\hat{X}, \hat{d}, \iota)$ satisfying the property of (g) are unique up to a unique isomorphism.

Hint for D(d): Suppose that $||f||_p = \infty$. Then there is a finite set $S \subset X$ with $(\sum_{x \in S} |f(x)|^p)^{1/p} \ge 1$ $\lim_{n\to\infty} ||f_n|| + 1.$