Math 412: Problem set 7 (due 10/3/2014)

Practice

P1. Find the characteristic and minimal polynomial of each matrix:

$\begin{pmatrix} 1 & 1 \\ & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	0 1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 4 0 0 0 0	0 0 2 0 0 0	0 0 2 0 0	0 0 0 1 2 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$,	$\begin{pmatrix} 5\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$	0 2 0 0 0 0	0 1 2 0 0 0	0 0 2 0 0	0 0 1 2 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$	
P2. Show that	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	1 0 0	$\begin{pmatrix} \alpha \\ 1 \\ 0 \end{pmatrix}$,	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	1 0 0	0` 1 0_) 8	are s	im	ilar.	G	ene	rali	ze t	o hi	gher dimensions.

P3. Let V be finite-dimensional and let $T \in \text{End}_F(V)$ satisfy $T^k = \text{Id}$. Then T is diagonable.

The Jordan Canonical Form

 For each of the following matrices, (i) find the characteristic polynomial and eigenvalues (over the complex numbers), (ii) find the eigenspaces and generalized eigenspaces, (iii) find a Jordan basis and the Jordan form.

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ -1 & -1 & 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

RMK I suggest computing by hand first even if you later check your answers with a CAS.

- 2. Suppose the characteristic polynomial of *T* is $x(x-1)^3(x-3)^4$.
 - (a) What are the possible minimal polynomials?
 - (b) What are the possible Jordan forms?
- 3. Let $T, S \in \text{End}_F(V)$.
 - (a) Suppose that T, S are similar. Show that $m_T(x) = m_S(x)$.
 - (b) Prove or disprove: if $m_T(x) = m_S(x)$ and $p_T(x) = p_S(x)$ then T, S are similar.
- 4. Let *F* be algebraically closed of characteristic zero. Show that every $g \in GL_n(F)$ has a square root, that is $g = h^2$ for some $h \in GL_n(F)$.
- 5. Let V be finite-dimensional, and let $\mathcal{A} \subset \operatorname{End}_F(V)$ be an F-subalgebra, that is a subspace containing the identity map and closed under multiplication (composition). Suppose that $T \in \mathcal{A}$ is invertible in $\operatorname{End}_F(V)$. Show that $T^{-1} \in \mathcal{A}$.

(extra credit problem on reverse)

Extra credit

- 6. (The additive Jordan decomposition) Let *V* be a finite-dimensional vector space, and let $T \in \text{End}_F(V)$.
 - DEF An *additive Jordan decomposition* of *T* is an expression T = S + N where $S \in \text{End}_F(V)$ is diagonable, $N \in \text{End}_F(V)$ is nilpotent, and *S*,*N* commute.
 - (a) Suppose that F is algebraically closed. Separating the Jordan form into its diagonal and off-diagonal parts, show that T has an additive Jordan decomposition.
 - (b) Let $S, S' \in \text{End}_F(V)$ be diagonable and suppose that S, S' commute. Show that S + S' is diagonable.
 - (c) Show that a nilpotent diagonable linear transformation vanishes.
 - (d) Suppose that *T* has two decompositions as in (a) (into commuting diagonable and nilpotent parts) T = S + N = S' + N'. Show that S = S' and N = N'.

Supplementary problems

- A. (extension of scalars for linear algebra) Let $F \subset K$ be fields and let V be an F-vectorspace. Let $V_K = K \otimes_F V$, where we consider K as an F-vectorspace in the natural way.
 - (a) Show that setting $\alpha (u \otimes \underline{v}) = (\alpha u) \otimes \underline{v}$ extends to a map $K \times V_K \to V_K$ satisfying the axioms of scalar multiplication for a *K*-vectorspace and compatible with the structure of V_K as an *F*-vectorspace coming from the tensor product.
 - (b) Let $\{\underline{\nu}_i\}_{i \in I} \subset V$ be a set of vectors. Show that it is linearly independent (resp. spanning) iff $\{1_K \otimes \underline{\nu}_i\}_{i \in I} \subset V_K$ is linearly independent (resp. spanning).
 - RMK This is how we show that the minimal polynomial does not depend on the field.
 - (c) For $T \in \text{End}_F(V)$ let $T_K = \text{Id}_K \otimes_F T \in \text{End}_F(V_K)$ be the tensor product map. Show that T_K is in fact *K*-linear.
 - (d) Show that $T_K \in \text{End}_K(V_K)$ is the unique *K*-linear map such that for any basis $\{\underline{v}_i\}_{i \in I} \subset V$, the matrix of T_K in the basis $\{1_K \otimes_F \underline{v}_i\}_{i \in I}$ is the matrix of *T* in the basis $\{\underline{v}_i\}$ (identification of the matrices under the inclusion $F \subset K$).
- B. (conjugacy classes in $GL_n(F)$) Let F be a field, and let $G = GL_n(F)$.
 - (a) Construct a bijection between conjugacy classes in *G* and certain Jordan forms. Note that the spectrum can lie in an extension field.
 - (b) Enumerate the conjugacy classes in $GL_2(\mathbb{F}_p)$.
 - (c) Enumerate the conjugacy classes of $GL_3(\mathbb{F}_p)$.