Math 412: Problem Set 6 (due 28/2/2014)

P1. (Minimal polynomials)

(a) Find the minimal polynomial of
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.
(b) Show that the minimal polynomial of $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$ is $x^2 (x-1)^2$.

- (c) Find a 3×3 matrix whose minimal polynomial is x^2 .
- P2. (Generalized eigenspaces) Let A be as in P1(b).
 - (a) What are the eigenvalues of A?
 - (b) Find the generalized eigenspaces.

The minimal polynomial

- 1. Let $D \in M_n(F) = \text{diag}(a_1, \ldots, a_n)$ be diagonal.
 - (a) For any polynomial $p \in F[x]$ show that $p(D) = \text{diag}(p(a_1), \dots, p(a_n))$.
 - (b) Show that the minimal polynomial of *D* is $m_D(x) = \prod_{j=1}^r (x a_{i_j})$ where $\{a_{i_j}\}_{j=1}^r$ is an enumeration of the distinct values among the a_i .
 - (c) Show that (over any field) the matrix of P1(b) is not similar to a digaonal matrix.
 - (d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any $p \in F[x]$, p(U) has diagonal p(D). In particular, $m_D|m_U$.
- 2. Let $T \in \text{End}(V)$ be diagonable. Show that every generalized eigenspace is simply an eigenspace.
- 3. Let $S \in \text{End}(U)$, $T \in \text{End}(V)$. Let $S \oplus T \in \text{End}(U \oplus V)$ be the "block-diagonal map".
 - (a) For $f \in F[x]$ show that $f(S \oplus T) = f(S) \oplus f(T)$.
 - (b) Show that $m_{T\oplus S} = \text{lcm}(m_S, m_T)$ ("least common multiple": the polynomial of smallest degree which is a multiple of both).
 - (c) Conclude that $\operatorname{Spec}_F(S \oplus T) = \operatorname{Spec}_F(S) \cup \operatorname{Spec}_F(T)$.
 - RMK See also problem A below.

Supplementary problems

- A. Let $R \in \text{End}(U \oplus V)$ be "block-upper-triangular", in that $R(U) \subset U$.
 - (a) Define a "quotient linear map" $\overline{R} \in \text{End}(U \oplus V/U)$.
 - (b) Let *S* be the restriction of *R* to *U*. Show that both m_S , $m_{\bar{R}}$ divide m_R .
 - (c) Let $f = \operatorname{lcm}[m_S, m_{\bar{R}}]$ and set T = f(R). Show that $T(U) = \{\underline{0}\}$ and that $T(V) \subset U$. (d) Show that $T^2 = 0$ and conclude that $f \mid m_R \mid f^2$.

 - (e) Show that $\operatorname{Spec}_F(R) = \operatorname{Spec}_F(S) \cup \operatorname{Spec}_F(\overline{R})$.
- B. Let $T \in \text{End}(V)$. For monic irreducible $p \in F[x]$ define $V_p = \{\underline{v} \in V \mid \exists k : p(T)^k \underline{v} = \underline{0}\}.$
 - (a) Show that V_p is a T-invariant subspace of V and that $m_{T \mid V_p} = p^k$ for some $k \ge 0$, with $k \ge 1$ iff $V_p \ne \{\underline{0}\}$. Conclude that $p^k | m_T$. (b) Show that if $\{p_i\}_{i=1}^r \subset F[x]$ are distinct irreducibles then the sum $\bigoplus_{i=1}^r V_{p_i}$ is direct. (c) Let $\{p_i\}_{i=1}^r \subset F[x]$ be the prime factors of $m_T(x)$. Show that $V = \bigoplus_{i=1}^r V_{p_i}$.

 - (d) Suppose that $m_T(x) = \prod_{i=1}^r p_i^{k_i}(x)$ is the prime factorization of the minimal polynomial. Show that $V_{p_i} = \text{Ker } p_i^{k_i}(T)$.