Math 412: Problem Set 5 (due 14/2/2014)

Tensor products of maps

1. Let U, V be finite-dimensional spaces, and let $A \in \operatorname{End}(U), B \in \operatorname{End}(V)$.
(a) Show that $(\underline{u}, \underline{v}) \mapsto(A \underline{u}) \otimes(B \underline{v})$ is bilinear, and obtain a linear map $A \otimes B \in \operatorname{End}(U \otimes V)$.
(b) Suppose A, B are diagonable. Using an appropriate basis for $U \otimes V$, Obtain a formula for $\operatorname{det}(A \otimes B)$ in terms of $\operatorname{det}(A)$ and $\operatorname{det}(B)$.
(c) Extending (a) by induction, show that $A^{\otimes k}$ induces maps $\operatorname{Sym}^{k} A \in \operatorname{End}\left(\operatorname{Sym}^{k} V\right)$ and $\Lambda^{k} A \in \operatorname{End}\left(\bigwedge^{k} V\right)$.
(${ }^{* *}$) Show that the formula of (b) holds for all A, B.
2. Suppose $\frac{1}{2} \in F$, and let U be finite-dimensional. Construct isomorphisms
$\{$ symmetric bilinear forms on $U\} \leftrightarrow\left(\operatorname{Sym}^{2} U\right)^{\prime} \leftrightarrow \operatorname{Sym}^{2}\left(U^{\prime}\right)$.

Structure Theory

3. Let L be a lower-triangular square matrix with non-zero diagonal entries.
(a) Give a "forward substitution" algorithm for solving $L \underline{x}=\underline{b}$ efficiently.
(b) Give a formula for L^{-1}, proving in particular that L is invertible and that L^{-1} is again lower-triangular.
RMK We'll see that if $\mathcal{A} \subset M_{n}(F)$ is a subspace containing the identity matrix and closed under matrix multiplication, then the inverse of any matrix in \mathcal{A} belongs to $c A$, giving an abstract proof of the same result).
4. Let $U \in M_{n}(F)$ be strictly upper-triangular, that is upper triangular with zeroes along the diagonal. Show that $U^{n}=0$ and construct such U with $U^{n-1} \neq 0$.
5. Let V be a finite-dimensional vector space, $T \in \operatorname{End}(V)$.
(*a) Show that the following statements are equivalent:
(1) $\forall \underline{v} \in V: \exists k \geq 0: T^{k} \underline{v}=\underline{0}$; (2) $\exists k \geq 0: \forall \underline{v} \in V: T^{k} \underline{\underline{v}}=\underline{0}$.

DEF A linear map satsfying (2) is called nilpotent. Example: see problem 4.
(b) Find nilpotent $A, B \in M_{2}(F)$ such that $A+B$ isn't nilpotent.
(c) Suppose that $A, B \in \operatorname{End}(V)$ are nilpotent and that A, B commute. Show that $A+B$ is nilpotent.

Supplementary problems

A. (The tensor algebra) Fix a vector space U.
(a) Extend the bilinear map $\otimes: U^{\otimes n} \times U^{\otimes m} \rightarrow U^{\otimes n} \otimes U^{\otimes m} \simeq U^{\otimes(n+m)}$ to a bilinear map $\otimes: \bigoplus_{n=0}^{\infty} U^{\otimes n} \times \bigoplus_{n=0}^{\infty} U^{\otimes n} \rightarrow \bigoplus_{n=0}^{\infty} U^{\otimes n}$.
(b) Show that this map \otimes is associative and distributive over addition. Show that $1_{F} \in F \simeq$ $U^{\otimes 0}$ is an identity for this multiplication.
DEF This algebra is called the tensor algebra $T(U)$.
(c) Show that the tensor algebra is free: for any F-algebra A and any F-linear map $f: U \rightarrow A$ there is a unique F-algebra homomorphism $\bar{f}: T(U) \rightarrow A$ whose restriction to $U^{\otimes 1}$ is f.
B. (The symmetric algebra). Fix a vector space U.
(a) Endow $\bigoplus_{n=0}^{\infty} \operatorname{Sym}^{n} U$ with a product structure as in 3(a).
(b) Show that this creates a commutative algebra $\operatorname{Sym}(U)$.
(c) Fixing a basis $\left\{\underline{u}_{i}\right\}_{i \in I} \subset U$, construct an isomorphism $F\left[\left\{x_{i}\right\}_{i \in I}\right] \rightarrow \operatorname{Sym}^{*} U$.

RMK In particular, $\operatorname{Sym}^{*}\left(U^{\prime}\right)$ gives a coordinate-free notion of "polynomial function on U ".
(d) Let $I \triangleleft T(U)$ be the two-sided ideal generated by all elements of the form $\underline{u} \otimes \underline{v}-\underline{v} \otimes \underline{u} \in$ $U^{\otimes 2}$. Show that the map $\operatorname{Sym}(U) \rightarrow T(U) / I$ is an isomorphism.
RMK When the field F has finite characteristic, the correct definition of the symmetric algebra (the definition which gives the universal property) is $\operatorname{Sym}(U) \stackrel{\text { def }}{=} T(U) / I$, not the space of symetric tensors.
C. Let V be a (possibly infinite-dimensional) vector space, $A \in \operatorname{End}(V)$.
(a) Show that the following are equivalent for $\underline{v} \in V$: (1) $\operatorname{dim}_{F} \operatorname{Span}_{F}\left\{A^{n} \underline{v}\right\}_{n=0}^{\infty}<\infty$; (2) there is a finite-dimensional subspace $\underline{v} \in W \subset V$ such that $A W \subset W$.

DEF Call such \underline{v} locally finite, and let $V_{\text {fin }}$ be the set of locally finite vectors.
(b) Show that $V_{\text {fin }}$ is a subspace of V.
(c) A A is called locally nilpotent for every $\underline{v} \in V$ there is $n \geq 0$ such that $A^{n} \underline{v}=\underline{0}$ (condition (1) of $5(\mathrm{a})$). Find a vector space V and a locally nilpotent map $A \in \operatorname{End}(V)$ which is not nilpotent.
($* \mathrm{~d}$) A is called locally finite if $V_{\text {fin }}=V$, that is if every vector is contained in a finitedimensional A-invariant subspace. Find a space V and locally finite linear maps $A, B \in$ $\operatorname{End}(V)$ such that $A+B$ is not locally finite.

