Math 412: Problem Set 5 (due 14/2/2014)

Tensor products of maps

- 1. Let U, V be finite-dimensional spaces, and let $A \in \text{End}(U)$, $B \in \text{End}(V)$.
 - (a) Show that $(\underline{u}, \underline{v}) \mapsto (A\underline{u}) \otimes (B\underline{v})$ is bilinear, and obtain a linear map $A \otimes B \in \text{End}(U \otimes V)$.
 - (b) Suppose A, B are diagonable. Using an appropriate basis for U ⊗ V, Obtain a formula for det(A ⊗ B) in terms of det(A) and det(B).
 - (c) Extending (a) by induction, show that $A^{\otimes k}$ induces maps $\operatorname{Sym}^k A \in \operatorname{End}(\operatorname{Sym}^k V)$ and $\bigwedge^k A \in \operatorname{End}(\bigwedge^k V)$.
 - (**d) Show that the formula of (b) holds for all A, B.
- 2. Suppose $\frac{1}{2} \in F$, and let *U* be finite-dimensional. Construct isomorphisms

{ symmetric bilinear forms on U} \leftrightarrow (Sym²U)['] \leftrightarrow Sym²(U').

Structure Theory

- 3. Let *L* be a lower-triangular square matrix with non-zero diagonal entries.
 - (a) Give a "forward substitution" algorithm for solving $L\underline{x} = \underline{b}$ efficiently.
 - (b) Give a formula for L^{-1} , proving in particular that L is invertible and that L^{-1} is again lower-triangular.
 - RMK We'll see that if $\mathcal{A} \subset M_n(F)$ is a subspace containing the identity matrix and closed under matrix multiplication, then the inverse of any matrix in \mathcal{A} belongs to cA, giving an abstract proof of the same result).
- 4. Let $U \in M_n(F)$ be *strictly upper-triangular*, that is upper triangular with zeroes along the diagonal. Show that $U^n = 0$ and construct such U with $U^{n-1} \neq 0$.
- 5. Let *V* be a finite-dimensional vector space, $T \in \text{End}(V)$. (*a) Show that the following statements are equivalent:
 - (1) $\forall \underline{v} \in V : \exists k \ge 0 : T^{k} \underline{v} = \underline{0};$ (2) $\exists k \ge 0 : \forall \underline{v} \in V : T^{k} \underline{v} = \underline{0}.$
 - DEF A linear map satsfying (2) is called *nilpotent*. Example: see problem 4.
 - (b) Find nilpotent $A, B \in M_2(F)$ such that A + B isn't nilpotent.
 - (c) Suppose that $A, B \in \text{End}(V)$ are nilpotent and that A, B commute. Show that A + B is nilpotent.

Supplementary problems

- A. (The tensor algebra) Fix a vector space U.
 - (a) Extend the bilinear map $\otimes : U^{\otimes n} \times U^{\otimes m} \to U^{\otimes n} \otimes U^{\otimes m} \simeq U^{\otimes (n+m)}$ to a bilinear map $\otimes : \bigoplus_{n=0}^{\infty} U^{\otimes n} \times \bigoplus_{n=0}^{\infty} U^{\otimes n} \to \bigoplus_{n=0}^{\infty} U^{\otimes n}$.
 - (b) Show that this map \otimes is associative and distributive over addition. Show that $1_F \in F \simeq U^{\otimes 0}$ is an identity for this multiplication.
 - DEF This algebra is called the *tensor algebra* T(U).
 - (c) Show that the tensor algebra is *free*: for any *F*-algebra *A* and any *F*-linear map $f: U \to A$ there is a unique *F*-algebra homomorphism $\overline{f}: T(U) \to A$ whose restriction to $U^{\otimes 1}$ is *f*.
- B. (The symmetric algebra). Fix a vector space U.
 - (a) Endow $\bigoplus_{n=0}^{\infty} \text{Sym}^n U$ with a product structure as in 3(a).
 - (b) Show that this creates a commutative algebra Sym(U).
 - (c) Fixing a basis $\{\underline{u}_i\}_{i \in I} \subset U$, construct an isomorphism $F[\{x_i\}_{i \in I}] \to \operatorname{Sym}^* U$.
 - RMK In particular, $Sym^*(U')$ gives a coordinate-free notion of "polynomial function on U".
 - (d) Let $I \triangleleft T(U)$ be the two-sided ideal generated by all elements of the form $\underline{u} \otimes \underline{v} \underline{v} \otimes \underline{u} \in U^{\otimes 2}$. Show that the map Sym $(U) \rightarrow T(U)/I$ is an isomorphism.
 - RMK When the field F has finite characteristic, the correct definition of the symmetric algebra (the definition which gives the universal property) is $\text{Sym}(U) \stackrel{\text{def}}{=} T(U)/I$, not the space of symmetric tensors.
- C. Let *V* be a (possibly infinite-dimensional) vector space, $A \in \text{End}(V)$.
 - (a) Show that the following are equivalent for $\underline{v} \in V$: (1) dim_F Span_F $\{A^n \underline{v}\}_{n=0}^{\infty} < \infty$; (2) there is a finite-dimensional subspace $\underline{v} \in W \subset V$ such that $AW \subset W$.
 - DEF Call such <u>v</u> locally finite, and let V_{fin} be the set of locally finite vectors.
 - (b) Show that V_{fin} is a subspace of V.
 - (c) A A is called *locally nilpotent* for every <u>v</u> ∈ V there is n ≥ 0 such that Aⁿ<u>v</u> = 0 (condition (1) of 5(a)). Find a vector space V and a locally nilpotent map A ∈ End(V) which is not nilpotent.
 - (*d) *A* is called *locally finite* if $V_{\text{fin}} = V$, that is if every vector is contained in a finitedimensional *A*-invariant subspace. Find a space *V* and locally finite linear maps $A, B \in$ End(V) such that A + B is not locally finite.