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Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

• Problem sets will be posted on the course website.
– To the extent I have time, solutions may be posted on Connect.
– If you create solution sets I’ll certainly post them.

• Textbooks
– Halmos
– Algebra books

0.2. Euler’s Theorem

Let G = (V,E) be a connected planar graph. A face of G is a finite connected component of
R2 \G.

THEOREM 1 (Euler). v− e+ f = 1.

PROOF. Arbitrarily orient the edges. Let ∂E : RE → RV be defined by f ((u,v)) = 1v− 1u,
∂F : RF → RE be given by the sum of edges around the face.

LEMMA 2. ∂F is injective.

PROOF. Faces containing boundary edges are independent. Remove them and repeat. �

LEMMA 3. Ker∂E = Im∂F .

PROOF. Suppose a combo of edges is in the kernel. Following a sequence with non-zero
coefficients gives a closed loop, which can be expressed as a sum of faces. Now subtract a multiple
to reduce the number of edges with non-zero coefficients. �

LEMMA 4. Im(∂E) is the the set of functions with total weight zero.

PROOF. Clearly the image is contained there. Conversely, given f of total weight zero move
the weight to a single vertex using elements of the image. [remark: quotient vector spaces] �

Now dimRE = dimKer∂E +dimIm∂E = dimIm∂F +dimIm∂E so

e = f +(v−1) .

�

REMARK 5. Using F2 coefficients is even simpler.
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0.3. Course plan (subject to revision) (Lecture 1, 6/1/13)

• Quick review
• Some constructions

– Direct sum and product
– Spaces of homomorphisms and duality
– Quotient vector spaces
– Multilinear algebra: Tensor products

• Structure theory for linear maps
– Gram–Schmidt, Polar, Cartan
– The Bruhat decompositions and LU, LL† factorization; numerical applications
– The minimal polynomial and the Cayley–Hamilton Theorem
– The Jordan canonical form

• Analysis with vectors and matrices
– Norms on vector spaces
– Operator norms
– Matrices in power series: etX and its friends.

• Other topics if time permits.
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0.4. Review

0.4.1. Basic definitions. We want to give ourselves the freedom to have scalars other than real
or complex.

DEFINITION 6 (Fields). A field is a quintuple (F,0,1,+, ·) such that (F,0,+) and (F \{0} ,1, ·)
are abelian groups, and the distributive law ∀x,y,z ∈ F : x(y+ z) = xy+ xz holds.

EXAMPLE 7. R, C, Q. F2 (via addition and multiplication tables; ex: show this is a field), Fp.

EXERCISE 8. Every finite field has pr elements for some prime p and some integer r≥ 1. Fact:
there is one such field for every prime power.

DEFINITION 9. A vector space over a field F is a quadruple (V,0,+, ·) where (V,0,+) is an
abelian group, and · : F×V →V is a map such that:

(1) 1Fv = v.
(2) α (βv) = (αβ )v.
(3) (α +β )(v+w) = αv+βv+αw+βw.

LEMMA 10. 0F · v = 0 for all v.

PROOF. 0v = (0+0)v = 0v+0v. Now subtract 0v from both sides. �

0.4.2. Bases and dimension. Fix a vector space V .

DEFINITION 11. Let S⊂V .
• v∈V depends on S if there are {vi}

r
i=1⊂ S and {ai}r

i=1⊂ F such that v=∑
r
i=1 aivi [empty

sum is 0]
• Write SpanF(S)⊂V for the set of vectors that depend on S.
• Call S linearly dependent if some v ∈ S depends on S \ {v}, equivalently if there are

distinct {vi}
r
i=1 ⊂ S and {ai}r

i=1 ⊂ F such that ∑
r
i=1 aivi = 0.

• Call S linearly independent if it is not linearly dependent.

AXIOM 12 (Axiom of choice). Every vector space has a basis.

0.4.3. Examples. {0}, Rn, FX .
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Math 412: Problem Set 1 (due 15/1/2014)

Practice problems, any sub-parts marked “OPT” (optional) and supplementary problems are
not for submission.

Practice problems

P1 Show that the map f : R3→ R given by f (x,y,z) = x−2y+ z is a linear map. Show that the
maps (x,y,z) 7→ 1 and (x,y,z) 7→ x2 are non-linear.

P2 Let F be a field, X a set. Carefully show that pointwise addition and scalar multiplication
endow the set FX of functions from X to F with the structure of an F-vectorspace.

For submission
RMK The following idea will be used repeatedly during the course to prove that sets of vectors

are linearly independent. Make sure you understand how this argument works.
1. Let V be a vector space, S ⊂ V a set of vectors. A minimal dependence in S is an equality

∑
m
i=1 aivi = 0 where vi ∈ S are distinct, ai are scalars not all of which are zero, and m≥ 1 is as

small as possible so that such {ai}, {vi} exist.

(a) Find a minimal dependence among


1

1
0

 ,

1
0
1

 ,

1
1
1

 ,

2
1
1

⊂ R3.

(b) Show that in a minimal dependence the ai are all non-zero.
(c) Suppose that ∑

m
i=1 aivi and ∑

m
i=1 bivi are minimal dependences in S, involving the exact

same set of vectors. Show that there is a non-zero scalar c such that ai = cbi.
(d) Let T : V →V be a linear map, and let S⊂V be a set of (non-zero) eigenvectors of T , each

corresponding to a distinct eigenvalue. Applying T to a minimal dependence in S obtain a
contradiction to (b) and conclude that S is actually linearly independent.

(**e) Let Γ be a group. The set Hom(Γ,C×) of group homomorphisms from Γ to the multi-
plicative group of nonzero complex numbers is called the set of quasicharacters of Γ (the
notion of “character of a group” has an additional, different but related meaning, which is
not at issue in this problem). Show that Hom(Γ,C×) is linearly independent in the space
CΓ of functions from Γ to C.

2. Let S = {cos(nx)}∞

n=0∪{sin(nx)}∞

n=1, thought of as a subset of the space C(−π,π) of contin-
uous functions on the interval [−π,π].
(a) Applying d

dx to a putative minimal dependence in S obtain a different linear dependence
of at most the same length, and use that to show that S is, in fact, linearly independent.

(b) Show that the elements of S are an orthogonal system with respect to the inner product
〈 f ,g〉 =

∫
π

−π
f (x)g(x)dx (feel free to look up any trig identities you need). This gives a

different proof of their independence.
(c) Let W = SpanC(S) (this is usually called “the space of trigonometric polynomials”; a

typical element is 5− sin(3x)+
√

2cos(15x)−π cos(32x)). Find a ordering of S so that
the matrix of the linear map d

dx : W →W in that basis has a simple form.

8



3. (Matrices associated to linear maps) Let V,W be vector spaces of dimensions n,m respectively.
Let T ∈ Hom(V,W ) be a linear map from V to W . Show that there are ordered bases B ={

v j
}n

j=1 ⊂ V and C = {wi}
m
i=1 ⊂W and an integer d ≤ min{n,m} such that the matrix A =(

ai j
)

of T with respect to those bases satisfies ai j =

{
1 i = j ≤ d
0 otherwise

, that is has the form

1
. . .

1
0

. . .
0


(Hint1: study some examples, such as the matrices

(
1

1

)
and

(
2 −4
1 −2

)
) (Hint2: start your

solution by choosing a basis for the image of T ).

Extra credit: Finite fields
4. Let F be a field.

(a) Define a map ι : (Z,+)→ (F,+) by mapping n ∈ Z≥0 to the sum 1F + · · ·+ 1F n times.
Show that this is a group homomorphism.

DEF If the map ι is injective we say that F is of characteristic zero.
(b) Suppose there is a non-zero n ∈ Z in the kernel of ι . Show that the smallest positive such

number is a prime number p.
DEF In that case we say that F is of characteristic p.
(c) Show that in that case ι induces an isomorphism between the finite field Fp = Z/pZ and

a subfield of F . In particular, there is a unique field of p elements up to isomorphism.

5. Let F be a field with finitely many elements.
(a) Carefully endow F with the structure of a vector space over Fp for an appropriately chosen

p.
(b) Show that there exists an integer r ≥ 1 such that F has pr elements.
RMK For every prime power q = pr there is a field Fq with q elements, and two such fields

are isomorphic. They are usually called finite fields, but also Galois fields after their dis-
coverer.

Supplementary Problems I: A new field

A. Let Q(
√

2) denote the set
{

a+b
√

2 | a,b ∈Q
}
⊂ R.

(a) Show that Q(
√

2) is a Q-subspace of R.
(b) Show that Q(

√
2) is two-dimensional as a Q-vector space. In fact, identify a basis.

(*c) Show that Q(
√

2) is a field.
(**d) Let V be a vector space over Q(

√
2) and suppose that dimQ(

√
2)V = d. Show that

dimQV = 2d.

9



Supplementary Problems II: How physicists define vectors

Fix a field F .
B. (The general linear group)

(a) Let GLn(F) denote the set of invertible n× n matrices with coefficients in F . Show that
GLn(F) forms a group with the operation of matrix multiplication.

(b) For a vector space V over F let GL(V ) denote the set of invertible linear maps from V to
itself. Show that GL(V ) forms a group with the operation of composition.

(c) Suppose that dimF V = n Show that GLn(F) ' GL(V ) (hint: show that each of the two
group is isomorphic to GL(Fn).

C. (Group actions) Let G be a group, X a set. An action of G on X is a map · : G×X → X such
that g · (h · x) = (gh) · x and 1G · x = x for all g,h ∈ G and x ∈ X (1G is the identity element of
G).
(a) Show that matrix-vector multiplication (g,v) 7→ gv defines an action of G = GLn(F) on

X = Fn.
(b) Let V be an n-dimensional vector space over F , and let B be the set of ordered bases of V .

For g ∈ GLn(F) and B = {vi}
dimV
i=1 ∈ B set gB =

{
∑

n
j=1 gi jvi

}n

j=1
. Check that gB ∈ B and

that (g,B) 7→ gB is an action of GLn(F) on B.
(c) Show that the action is transitive: for any B,B′ ∈ B there is g ∈GLn(F) such that gB = B′.
(d) Show that the action is simply transitive: that the g from part (b) is unique.

D. (From the physics department) Let V be an n-dimensional vector space, and let B be its set
of bases. Given u ∈ V define a map φu : B → Fn by setting φu(B) = a if B = {vi}

n
i=1 and

u = ∑
n
i=1 aivi.

(a) Show that αφu +φu′ = φαu+u′ . Conclude that the set
{

φu
}

u∈V forms a vector space over
F .

(b) Show that the map φu : B→ Fn is equivariant for the actions of B(a),B(b), in that for each
g ∈ GLn(F), B ∈ B, g

(
φu(B)

)
= φu(gB).

(c) Physicists define a “covariant vector” to be an equivariant map φ : B → Fn. Let Φ be the
set of covariant vectors. Show that the map u 7→ φu defines an isomorphism V →Φ. (Hint:
define a map Φ→V by fixing a basis B= {vi}

n
i=1 and mapping φ 7→∑

n
i=1 aivi if φ(B) = a).

(d) Physicists define a “contravariant vector” to be a map φ : B → Fn such that φ(gB) =
tg−1 · (φ(B)). Verify that (g,a) 7→ tg−1a defines an action of GLn(F) on Fn, that the set
Φ′ of contravariant vectors is a vector space, and that it is naturally isomorphic to the dual
vector space V ′ of V .

Supplementary Problems III: Fun in positive characteristic

E. Let F be a field of characteristic 2 (that is, 1F +1F = 0F ).
(a) Show that for all x,y ∈ F we have x+ x = 0F and (x+ y)2 = x2 + y2.
(b) Considering F as a vector space over F2 as in 5(a), show that the map given by Frob(x) =

x2 is a linear map.
(c) Suppose that the map x 7→ x2is actually F-linear and not only F2-linear. Show that F = F2.
RMK Compare your answer with practice problem 1.

F. (This problem requires a bit of number theory) Now let F have characteristic p > 0. Show that
the Frobenius endomorphism x 7→ xp is Fp-linear.
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CHAPTER 1

Constructions

Fix a field F .

1.1. Direct sum, direct product

1.1.1. Simplest case (Lecture 2, 8/1/2014).
CONSTRUCTION 13 (External direct sum). Let U,V be vector spaces. Their direct sum, de-

noted U⊕V , is the vector space whose underlying set is U×V , with coordinate-wise addition and
scalar multiplication.

LEMMA 14. This really is a vector space.

REMARK 15. The Lemma serves to review the definition of vector space.

PROOF. Every property follows from the respective properties of U,V . �

REMARK 16. More generally, can take the direct sum of groups.

LEMMA 17. dimF (U⊕V ) = dimF U +dimF V .

REMARK 18. This Lemma serves to review the notion of basis.

PROOF. Let BU ,BV be bases of U,V respectively. Then {(u,0V )}u∈BU
t {(0U ,v)}v∈BV

is a
basis of U⊕V . �

EXAMPLE 19. Rn⊕Rm ' Rn+m.

(Lecture 3, 10/1/2014) A key situation is when U,V are subspaces of an “ambient” vector
space W .

LEMMA 20. Let W be a vector space, U,V ⊂W. Then SpanF (U ∪V ) = {u+ v | u ∈U,v ∈V}.
PROOF. RHS contained in the span by definition. It is a subspace (non-empty, closed under

addition and scalar multiplication) which contains U,V hence contains the span. �

DEFINITION 21. The space in the previous lemma is called the sum of U,V and denoted U +V .

LEMMA 22. Let U,V ⊂W. There is a unique homomorphism U ⊕V →U +V which is the
identity on U,V .

PROOF. Define f ((u,v)) = u+ v. Check that this is a linear map. �

PROPOSITION 23 (Dimension of sums). dimF (U +V ) = dimF U +dimF V −dimF (U ∩V ).

PROOF. Consider the map f of Lemma 22. It is surjective by Lemma 20. Moreover Ker f =
{(u,v) ∈U⊕V | u+ v = 0W}, that is

Ker f = {(w,−w) | w ∈U ∩V} 'U ∩V .

Since dimF Ker f +dimF Im f = dim(U⊕V ) the claim now follows from Lemma 17. �
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REMARK 24. This was a review of that formula.

DEFINITION 25 (Internal direct sum). We say the sum is direct if f is an isomorphism.

THEOREM 26. For subspaces U,V ⊂W TFAE
(1) The sum U +V is direct and equals W;
(2) U +V =W and U ∩V = {0}
(3) Every vector w ∈W can be uniquely written in the form w = u+ vv.

PROOF. (1)⇒ (2): U +V =W by assumption, U ∩V = Ker f .
(2)⇒ (3): the first assumption gives existence, the second uniqueness.
(3)⇒ (1): existence says f is surjective, uniqueness says f is injective. �

1.1.2. Finite direct sums (Lecture 4, 13/1/2013). Three possible notions: (U⊕V )⊕W , U⊕
(V ⊕W ), vector space structure on U ×V ×W . These are all the same. Not just isomorphic (that
is, not just same dimension), but also isomorphic when considering the extra structure of the copies
of U,V,W . How do we express this?

DEFINITION 27. W is the internal direct sum of its subspaces {Vi}i∈I if it spanned by them
and each vector has a unique representation as a sum of elements of Vi (either as a finite sum of
non-zero vectors or as a zero-extended sum).

REMARK 28. This generalizes the notion of “linear independence” from vectors to subspaces.

LEMMA 29. Each of the three candidates contains an embedded copy of U,V,W and is the
internal direct sum of the three images.

PROOF. Easy. �

PROPOSITION 30. Let A,B each be the internal direct sum of embedded copies of U,V,W.
Then there is a unique isomorphism A→ B respecting this structure.

PROOF. Construct. �

REMARK 31. (1) Proof only used result of Lemma, not specific structure; but (2) proof im-
plicitly relies on isomorphism to U×V ×W ; (3) We used the fact that a map can be defined using
values on copies of U,V,W (4) Exactly same proof as the facts that a function on 3d space can be
defined on bases, and that that all 3d spaces are isomorphic.

• Dimension by induction.

DEFINITION 32. Abstract arbitrary direct sum.

• Block diagonality.
• Block upper-triangularity. [first structural result].

1.2. Quotients (Lecture 5, 15/1/2015)

Recall that for a group G and a normal subgroup N, we can endow the quotient G/N with group
structure (gN)(hN) = (gh)N.

• This is well-defined, gives group.
• Have quotient map q : G→ G/N given by g 7→ gN.
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• Homomorphism theorem: any f : G→ H factors as G→ G/Ker( f ) follows by isomor-
phism.
• If N <M <G with both N,M normal then q(M)'M/N is normal in G/N and (G/N)/(M/N)'
(G/M).

Now do the same for vector spaces.

LEMMA 33. Let V be a vector space, W a subspace. Let π : V → V/W be the quotient as
abelian groups. Then there is a unique vector space structure on V/W making π a surjective
linear map.

PROOF. We must set α (v+W ) = αv+W . This is well-defined and gives the isomorphism.
�

Properties persist.

1.3. Hom spaces and duality

1.3.1. Hom spaces (Lecture 5 continued).

DEFINITION 34. HomF(U,V ) will denote the space of F-linear maps U →V .

LEMMA 35. HomF(U,V )⊂VU is a subspace, hence a vector space.

DEFINITION 36. V ′ = HomF(V,F) is called the dual space.

Motivation 1: in PDE. Want solutions in some function space V . Use that V ′ is much bigger to
find solutions in V ′, then show they are represented by functions.
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Math 412: Problem Set 2 (due 22/1/2014)

Practice

P1 Let {Vi}i∈I be a family of vector spaces, and let Ai ∈ End(Vi) = Hom(Vi,Vi).
(a) Show that there is a unique element

⊕
i∈I Ai ∈ End(

⊕
i∈I Vi) whose restriction to the image

of Vi in the sum is Ai.
(b) Carefully show that the matrix of

⊕
i∈I Ai in an appropriate basis is block-diagonal.

P2 Construct a vector space W and three subspaces U,V1,V2 such that W = U ⊕V1 = U ⊕V2
(internal direct sums) but V1 6=V2.

Direct sums

1. Give an example of V1,V2,V3 ⊂W where Vi∩Vj = {0} for every i 6= j yet the sum V1+V2+V3
is not direct.

2. Let {Vi}r
i=1 be subspaces of W with ∑

r
i=1 dim(Vi)> (r−1)dimW . Show that

⋂r
i=1Vi 6= {0}.

3. (Diagonability)
(a) Let T ∈End(V ). For each λ ∈F let Vλ =Ker(T −λ ). Let SpecF(T )= {λ ∈ F |Vλ 6= {0}}

be the set of eigenvalues of T . Show that the sum ∑λ∈SpecF (T )Vλ is direct (the sum equals
V iff T is diagonable).

(b) Show that a square matrix A∈Mn(F) is diagonable over F iff there exist n one-dimensional
subspaces Vi ⊂ Fn such Fn =

⊕n
i=1Vi and A(Vi)⊂Vi for all i.

Quotients

4. Let sln(F) = {A ∈Mn(F) | TrA = 0} and let pgln(F) = Mn(F)/F · In (matrices modulu scalar
matrices). Suppose that n is invertible in F (equivalently, that the characteristic of F does
not divide n). Show that the quotient map Mn(F) → pgln(F) restricts to an isomorphism
sln(F)→ pgln(F).

5. Recall our axiom that every vector space has a basis.
(a) Show1 that every linearly independent set in a vector space is contained in a basis.
(b) Let U ⊂W . Show that there exists another subspace V such that W =U⊕V .
(c) Let W = U ⊕V , and let π : W →W/U be the quotient map. Show that the restriction of

W to V is an isomorphism. Conclude that if U ⊕V1 'U ⊕V2 then V1 ' V2 (c.f. problem
P2)

6. (Structure of quotients) Let V ⊂W with quotient map π : W →W/V .
(a) Show that mapping U 7→ π(U) gives a bijection between (1) the set of subspaces of W

containing V and (2) the set of subspaces of W/V .
(b) (The universal property) Let Z be another vector spaces. Show that f 7→ f ◦ π gives a

linear bijection Hom(W/V,Z)→{g ∈ Hom(W,Z) |V ⊂ Kerg}.

1Directly, without using any form of transfinite induction
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7. For f : Rn→ R the Lipschitz constant of f is the (possibly infinite) number

‖ f‖Lip
def
= sup

{
| f (x)− f (y)|
|x− y|

| x,y ∈ Rn,x 6= y
}
.

Let Lip(Rn) =
{

f : Rn→ R | ‖ f‖Lip < ∞

}
be the space of Lipschitz functions.

PRA Show that f ∈ Lip(Rn) iff there is C such that | f (x)− f (y)| ≤C |x− y| for all x,y ∈ Rn.
(a) Show that Lip(Rn) is a vector space.
(b) Let 1 be the constant function 1. Show that ‖ f‖Lip descends to a function on Lip(Rn)/R1.
(c) For f̄ ∈ Lip(Rn)/R1 show that

∥∥ f̄
∥∥

Lip = 0 iff f̄ = 0.

Supplement: Infinite direct sums and products

CONSTRUCTION. Let {Vi}i∈I be a (possibly infinite) family of vector spaces.
(1) The direct product ∏i∈I Vi is the vector space whose underlying space is { f : I→

⋃
i∈I Vi | ∀i : f (i) ∈Vi}

with the operations of pointwise addition and scalar multiplication.
(2) The direct sum

⊕
i∈iVi is the subspace

{
f ∈∏i∈I Vi | #

{
i | f (i) 6= 0Vi

}
< ∞

}
of finitely

supported functions.

A. (Tedium)
(a) Show that the direct product is a vector space
(b) Show that the direct sum is a subspace.
(c) Let πi : ∏i∈I Vi→Vi be the projection on the ith coordinate (πi( f ) = f (i)). Show that this

is a surjective linear map.
(d) Let σi : Vi → ∏i∈I Vi be the map such that σi(v)( j) =

{
v j = i
0 j 6= i

. Show that σi is an

injective linear map.
B. (Meat) Let Z be another vector space.

(a) Show that
⊕

i∈I Vi is the internal direct sum of the images σi(Vi).
(b) Suppose for each i ∈ I we are given fi ∈ Hom(Vi,Z). Show that there is a unique f ∈

Hom(
⊕

i∈I Vi) such that f ◦σi = fi.
(c) You are instead given gi ∈Hom(Z,Vi). Show that there is a unique g∈Hom(Z,∏iVi) such

that πi ◦g = gi for all i.
C. (What a universal property can do) Let S be a vector space equipped with maps σ ′i : Vi→ S,

and suppose the property of 5(b) holds (for every choice of fi ∈ Hom(Vi,Z) there is a unique
f ∈ Hom(S,Z) ...)
(a) Show that each σ ′i is injective (hint: take Z =Vj, f j the identity map, fi = 0 if i 6= j).
(b) Show that the images of the σ ′i span S.
(c) Show that S is the internal direct sum of the Si.
(d) (There is only one direct sum) Show that there is a unique isomorphism ϕ : S→

⊕
i∈I Vi

such that ϕ ◦σ ′i = σi (hint: construct ϕ by assumption, and a reverse map using the ex-
istence part of 5(b); to see that the composition is the identity use the uniqueness of the
assumption and of 5(b), depending on the order of composition).

D. Now let P be a vector space equipped with maps π ′i : P→Vi such that 5(c) holds.
(a) Show that π ′i are surjective.
(b) Show that there is a unique isomorphism ψ : : P→∏i∈I Vi such that πi ◦ψ = π ′i .

15



Supplement: universal properties

E. A free abelian group is a pair (F,S) where F is an abelian group, S ⊂ F , and (“universal
property”) for any abelian group A and any (set) map f : S→ A there is a unique group homo-
morphism f̄ : G→ A such that f̄ (s) = f (s) for any s ∈ S. The size #S is called the rank of the
free abelian group.
(a) Show that (Z,{1}) is a free abelian group.
(b) Show that

(
Zd,{ek}

d
k=1

)
is a free abelian group.

(c) Let (F,S) ,(F ′,S′) be free abelian groups and let f : S→ S′ be a bijection. Show that f
extends to a unique isomorphism f̄ : F → F ′.

(d) Let (F,S) be a free abelian group. Show that S generates F .
(e) Show that every element of a free abelian group has infinite order.

Supplement: Lipschitz functions

DEFINITION. Let (X ,dX) ,(Y,dY ) be metric spaces, and let f : X → Y be a function. We say f
is a Lipschitz function (or is “Lipschitz continuous”) if for some C and for all x,x′ ∈ X we have

dY
(

f (x), f (x′)
)
≤CdX

(
x,x′
)
.

Write Lip(X ,Y ) for the space of Lipschitz continuous functions, and for f ∈ Lip(X ,Y ) write
‖ f‖Lip = sup

{
dY ( f (x), f (x′))

dX (x,x′)
| x 6= x′ ∈ X

}
for its Lipschitz constant.

F. (Analysis)
(a) Show that Lipschitz functions are continuous.
(b) Let f ∈C1(Rn;R). Show that ‖ f‖Lip = sup{|∇ f (x)| : x ∈ Rn}.
(c) Show that ‖α f +βg‖Lip ≤ |α|‖ f‖Lip + |β |‖g‖Lip (“‖·‖Lip is a seminorm”).
(d) Show that D

(
f̄ , ḡ
)
=
∥∥ f̄ − ḡ

∥∥
Lip defines a metric on Lip(Rn;R)/R1.

(e) Generalize (a),(c),(d) to the case of Lip(X ,R) where X is any metric space.
(f) Show that Lip(X ,R)/R1 is complete for all metric spaces X .
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1.3.2. The dual space, finite dimensions (Lecture 6, 17/1/2014).

CONSTRUCTION 37 (Dual basis). Let B = {bi}i∈I ⊂ V be a basis. Write v ∈ V uniquely as
v = ∑i∈I aibi (almost all ai = 0) and set ϕi(v) = ai.

LEMMA 38. These are linear functionals.

PROOF. Represent αv+ v′ in the basis. �

EXAMPLE 39. V = Fn with standard basis, get ϕi(x) = xi. Note every functional has the form
ϕ(x) = ∑

n
i=1 ϕ(ei)ϕi(x).

REMARK 40. Alternative construction: ϕi is the unique linear map to F satisfying ϕi(b j)= δi, j.

LEMMA 41. The dual basis is linearly independent. If dimF V < ∞ it is spanning.

PROOF. Evaluate a linear combination at b j. �

REMARK 42. This isomorphism V → V ′ is not canonical: the functional ϕi depends on the
whole basis B and not only on bi, and the dual basis transforms differently from the original basis
under change-of-basis. Also, the proof used evaluation – let’s investigate that more.

PROPOSITION 43 (Double dual). Given v∈V consider the evaluation map ev : V ′→F given by
ev(ϕ)=ϕ(v). Then v 7→ ev is a linear injection V ↪→V ′′, an isomorphism iff V is finite-dimensional.

PROOF. The vector space structure on V ′ (and on FV in general) is such that ev is linear. That
the map v 7→ ev is linear follows from the linearity of the elements of V ′. For injectivity let v ∈ V
be non-zero. Extending v to a basis, let ϕv be the element of the dual such that ϕv(v) = 1. Then
ev(ϕv) 6= 0 so ev 6= 0. If dimF V = n then dimF V ′ = n and thus dimF V ′′ = n and we have an
isomorphism. �

The map V ↪→V ′′ is natural: the image ev of v is intrinsic and does not depend on a choice of
basis.

1.3.3. The dual space, infinite dimensions (Lecture 7, 20/1/2014). Interaction with past con-
structions: (V/U)′ ⊂V ′ (PS2),

LEMMA 44. (U⊕V )′ 'U ′⊕V ′.

PROOF. Universal property. �

COROLLARY 45. Since (F)′ ' F, it follows by induction that (Fn)′ ' Fn.

What about infinite sums?
• The universal property gives a bijection (

⊕
i∈I Vi)

′←→
Ś

i∈I V ′i .
• Any Cartesian product

Ś

i∈I Wi has a natural vector space structure, coming from point-
wise addition and scalar multiplication:

– Note that the underlying set is
ą

i∈I

Wi = { f | f is a function with domain I and ∀i ∈ I : f (i) ∈Wi}

=

{
f : I→

⋃
i∈I

Wi | f (i) ∈Wi

}
.
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∗ RMK: AC means Cartesian products nonempty, but our sets have a distin-
guished element so this is not an issue.

– Define α (wi)i∈I +(w′i)i∈I
def
= (αwi +w′i)i∈I . This gives a vector space structure.

– Denote the resulting vector space ∏i∈I Wi and called it the direct product of the Wi.
• The bijection (

⊕
i∈I Vi)

′←→∏i∈I V ′i is now a linear isomorphism [in fact, the vector space
structure on the right is the one transported by the isomorphism].

We now investigate ∏iWi in general.
• Note that it contains a copy of each Wi (map w ∈Wi to the sequence which has w in the

ith position, and 0 at every other position).
• And these copies are linearly independent: if a sum of such vectors from distinct Wi is

zero, then every coordinate was zero.
• Thus ∏iWi contains

⊕
i∈I Wi as an internal direct sum.

– This subspace is exactly the subset {w ∈∏iWi | supp(w) is finite}.
– And in fact, that subspace proves that

⊕
i∈I Wi exists.

– But ∏iWi contains many other vectors – it is much bigger.

EXAMPLE 46. R⊕N ⊂ RN.

COROLLARY 47. The dual of an infinite-dimensional space is much bigger than the sum of the
duals, and the double dual is bigger yet.

1.3.4. Question: so we only have finite sums in linear algebra. What about infinite sums?
Answer: no infinite sums in algebra. Definition of ∑

∞
n=1 an =A from real analysis relies on analytic

properties of A (close to partial sums), not algebraic properties.
But, calculating sums can be understood in terms of linear functionals.

LEMMA 48 (Results from Calc II, reinterpreted). Let S ⊂ RN denote the set of sequences a
such that ∑

∞
n=1 an converges.

(1) R⊕N ⊂ S⊂ RN is a linear subspace.
(2) Σ : S→ R given by Σ(a) = ∑

∞
n=1 an is a linear functionals.

Philosophy: Calc I,II made element-by-element statements, but using linear algebra we can ex-
press them as statements on the whole space.

Now questions about summing are questions about intelligently extending the linear functional
Σ to a bigger subspace. BUT: if an extension is to satisfy every property of summing series, it is
actually the trivial (no) extension.

For more information let’s talk about limits of sequences instead (once we can generalize limits
just apply that to partial sums of a series).

DEFINITION 49. Let c⊂ `∞ ⊂ RN be the sets of convergent, respectively bounded sequences.

LEMMA 50. c⊂ `∞ are subspaces, and limn→∞ : c→ R is a linear functional.

EXAMPLE 51. Let C : RN→ RNbe the Cesàro map (Ca)N = 1
N ∑

N
n=1 an. This is clearly linear.

Let CS =C−1(c) be the set of sequences which are Cesàro-convergent, and set L ∈CS′ by L(a) =
limn→∞(Ca). This is clearly linear (composition of linear maps). For example, the sequence
(0,1,0,1, · · ·) now has the limit 1

2 .
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LEMMA 52. If a ∈ c then Ca ∈ c and they have the same limit. Thus L above is an extension of
limn→∞.

THEOREM 53. There are two functionals LIM, limω ∈ (`∞)′ (“Banach limit”, “limit along
ultrafilter”, respectively) such that:

(1) They are positive (map non-negative sequences to non-negative sequences);
(2) Agree with limn→∞ on c;
(3) And, in addition

(a) LIM◦S = LIM where S : `∞→ `∞is the shift.
(b) limω (anbn) = (limω an)(limω bn).

1.3.5. The invariant pairing (Lecture 8, 22/1/2014).
• Pairing V ×V ′

• Bilinear forms in general, equivalence to maps V →U ′.
• Pairing Fn×Fm via matrix; matrix representation of general bilinear form (“Gram ma-

trix”)
• Non-degeneracy: Duality = non-degen-pairing = isom to dual
• Identification of duals using pairings: Riesz representation theorems for C(X)′,H′.

1.3.6. The dual of a linear map (Lecture 9, 24/1/2014).

CONSTRUCTION 54. Let T ∈ Hom(U,V ). Set T ′ ∈ Hom(V ′,U ′) by (T ′ϕ)(v) = ϕ (T v).

LEMMA 55. This is a linear map Hom(U,V )→ Hom(V ′,U ′). An isomorphism of U,V finite-
dimensional.

LEMMA 56. (T S)′ = S′T ′
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Math 412: Problem Set 3 (due 29/1/2014)

Practice

P1 Let u1 =

1
1
1

, u2 =

 1
1
−1

, u3 =

 1
−1
−1

, u =

0
1
0

 as vectors in R3.

(a) Construct an explicit linear functional ϕ ∈
(
R3)′ vanishing on u1,u2.

(b) Show that {u1,u2,u3} is a basis on R3 and find its dual basis.
(c) Evaluate the dual basis at u.

P2 Let V be n-dimensional and let {ϕi}m
i=1 ∈V ′.

(a) Show that if m < n there is a non-zero v ∈V such that ϕi(v) = 0 for all i. Interpret this as
a statement about linear equations.

(b) When is it true that for each x ∈ Fm there is v ∈V such that for all i, ϕi(v) = xi?

Banach limits

Recall that `∞ ⊂ RNdenote the set of bounded sequences (the sequences a such that for some
M we have |ai| ≤M for all i). Let S : RN→RN be the shift map (Sa)n = an+1. A subspace U ⊂RN

is shift-invariant if S(U) ⊂U . If U is shift-invariant a function F with domain U is called shift-
invariant if F ◦S = F (example: the subset c⊂RN of convergent sequences is shift-invariant, as is
the functional lim: c→ R assigning to every sequence its limit).
P3 (Useful facts)

(a) Show that `∞ is a subspace of RN.
(b) Show that S : RN→ RN is linear and that S(`∞) = `∞.
(c) Let U ⊂ RN be a shift-invariant subspace. Show that the set U0 = {Sa−a | a ∈U} is a

subspace of U .
(d) In the case U = R⊕N of sequences of finite support, show that U0 =U .
(e) Let Z be an auxiliary vector space. Show that F ∈ Hom(U,Z) is shift-invariant iff F

vanishes on U0.

1. Let W = {Sa−a | a ∈ `∞} ⊂ `∞. Let 1 be the sequences everywhere equal to 1.
(a) Show that the sum W +R1⊂ `∞ is direct and construct an S-invariant functional ϕ : `∞→

R such that ϕ(1) = 1.
(b) (Strengthening) For a ∈ `∞ set ‖a‖

∞
= supn |an|. Show that if a ∈ W and x ∈ R then

‖a+ x1‖
∞
≥ |x|. (Hint: consider the average of the first N entries of the vector a+ x1).

SUPP Let ϕ ∈ (`∞)′ be shift-invariant, positive, and satisfy ϕ(1)= 1. Show that liminfn→∞ an≤
ϕ(a)≤ limsupn→∞ an and conclude that the restriction of ϕ to c is the usual limit.

2. (“choose one”) Let ϕ ∈ (`∞)′ satisfy ϕ(1) = 1. Let a be the sequence an =
1+(−1)n

2 .
(a) Suppose that ϕ is shift-invariant. Show that ϕ (a) = 1

2 .
(b) Suppose that ϕ respects pointwise multiplication (if zn = xnyn then ϕ(z) = ϕ(x)ϕ(y)).

Show that ϕ (a) ∈ {0,1}.
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Duality and bilinear forms

3. (The dual map) Let U,V,W be vector spaces, and let T ∈ Hom(U,V ), and let S ∈ Hom(V,W ).
(a) (The abstract meaning of transpose) Suppose U,V be finite-dimensional with bases

{
u j
}m

j=1⊂
U , {vi}

n
i=1 ⊂ V , and let A ∈ Mn,m(F) be the matrix of T in those bases. Show that the

matrix of the dual map T ′ ∈ Hom(V ′,U ′) with respect to the dual bases
{

u′j
}m

j=1
⊂U ′,

{v′i}
n
i=1 ⊂V ′ is the transpose tA.

(b) Show that (ST )′ = T ′S′. It follows that t(AB) = tBtA.

4. Let F⊕N denote the space of sequences of finite support. Construct a non-degenerate pairing
F⊕N×FN→ F , giving a concrete realization of

(
F⊕N

)′.
5. Let C∞

c (R) be the space of smooth functions on R with compact support, and let D : C∞
c (R)→

C∞
c (R) be the differentiation operator d

dx . For a reasonable function f on R define a functional
ϕ f on C∞

c (R) by ϕ f (g) =
∫
R f gdx (note that f need only be integrable, not continuous).

(a) Show that if f is continuously differentiable then D′ϕ f = ϕ−D f .
DEF For this reason one usually extends the operator D to the dual space by Dϕ =−D′ϕ , thus

giving a notion of a “derivative” for non-differentiable and even discontinuous functions.
(b) Let the “Dirac delta” δ ∈ C∞

c (R)′ be the evaluation functional δ ( f ) = f (0). Express
(Dδ )( f ) in terms of f .

(c) Let ϕ be a linear functional such that D′ϕ = 0. Show that for some constant c, ϕ = ϕc1.

Supplement: The support of distributions

A. (This is a problem in analysis unrelated to 412) Let ϕ ∈C∞
c (R)′.

DEF Let U ⊂R be open. Say that ϕ is supported away from U if for any f ∈C∞
c (U), ϕ( f )= 0.

The support supp(ϕ) is the complement the union of all such U .
(a) Show that supp(ϕ) is closed, and that ϕ is supported away from R\ supp(ϕ).
(b) Show that supp(δ ) = {0} (see problem 5(b)).
(c) Show that supp(Dϕ)⊂ supp(ϕ) (note that this is well-known for functions).
(d) Show that Dδ is not of the form ϕ f for any function f .
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1.4. Multilinear algebra and tensor products

1.4.1. Multilinear forms (Lecture 9, 24/1/2014).

DEFINITION 57. Let {Vi}i∈I be vector spaces, W another vector space. A function f : ×i∈I
Vi→W is said to be multilinear if it is linear in each variable.

EXAMPLE 58 (Bilinear maps). (1) f (x,y) = xy is bilinear F2→ F .
(2) The map (T,v) 7→ T v is a multilinear map Hom(V,W )×V →W .
(3) For a matrix A ∈Mn,m(F) have

(
x,y
)
7→ txAy on Fn×Fm.

(4) For ϕ ∈U ′, ψ ∈V ′ have (u,v) 7→ ϕ(u)ψ(v), and finite combinations of those.

REMARK 59. A multilinear function on U ×V is not the same as a linear function on U ⊕V .
For example: is f (au,av) equal to a f (u,v) or to a2 f (u,v)? That said,

⊕
Vi was universal for maps

from Vi. It would be nice to have a space which is universal for multilinear maps. We only discuss
the finite case.

EXAMPLE 60. A multilinear function B : U×{0}→ F has B(u,0) = B(u,0 ·0) = 0 ·B(u,0) =
0. A multilinear function B : U×F→ F has B(u,x) = B(u,x ·1) = xB(u,1) = xϕ(u) where ϕ(u) =
B(u,1) ∈U ′.

We can reduce everything to Example 58(3): Fix bases {ui} ,
{

v j
}

. Then

B

(
∑

i
xiui,∑

i
y jv j

)
= ∑

i, j
xiB(ui,v j)y j =

txBy

where Bi j = B(ui,v j). Note: xi = ϕi(u) where {ϕi} is the dual basis. Conclude that

(1.4.1) B = ∑
i, j

B
(
ui,v j

)
ϕiψ j .

Easy to check that this is an expansion in a basis (check against
(
ui,v j

)
). We have shown:

PROPOSITION 61. The set
{

ϕiψ j
}

i, j is a basis of the space of bilinear forms U×V → F.

COROLLARY 62. The space of bilinear forms on U×V has dimension dimF U ·dimF V .

REMARK 63. Also works in infinite dimensions, since can have the sum (1.4.1) be infinite –
every pair of vectors only has finite support in the respective bases.

1.4.2. The tensor product (Lecture 10, 27/1/2014). Now let’s fix U,V and try to construct a
space that will classify bilinear maps on U×V .

• Our space will be generated by terms u⊗ v on which we can evaluate f to get f (u,v).
• Since f is multilinear, f (au,bv) = ab f (u,v) so need (au)⊗ (bv) = ab(u⊗ v).
• Similarly, since f (u1 +u2,v) = f (u1,v)+ f (u2,v) want (u1 +u2)⊗(v1 + v2) = u1⊗v1+

u2⊗ v1 +u1⊗ v2 +u2⊗ v2.

CONSTRUCTION 64 (Tensor product). Let U,V be spaces. Let X = F⊕(U×V ) be the formal
span of all expressions of the form {u⊗ v}(u,v)∈U×V . Let Y ⊂ X be the subspace spanned by

{(au)⊗ (bv)−ab(u⊗ v) | a,b ∈ F, (u,v) ∈U×V}
and

{(u1 +u2)⊗ (v1 + v2)− (u1⊗ v1 +u2⊗ v1 +u1⊗ v2 +u2⊗ v2) | ∗∗} .
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Then set U⊗V = X/Y and let ι : U×V →U⊗V be the map ι(u,v) = (u⊗ v)+Y .

THEOREM 65. ι is a bilinear map. For any space W any any bilinear map f : U ×V →W,
there is a unique linear map f̃ : U⊗V →W such that f = f̃ ◦ ι .

PROOF. Uniqueness is clear, since f̃ (u⊗v) = f (u,v) fixes f̃ on a generating set. For existence
we need to show that if ˜̃f : X→W is defined by ˜̃f (u⊗v) = f (u,v) then ˜̃f vanishes on Y and hence
descends to U⊗V . �

PROPOSITION 66. Let BU ,BV be bases for U,V respectively. Then {u⊗ v | u ∈ BU ,v ∈ BV} is
a basis for U⊗V .

PROOF. Spanning: use bilinearity of ι . Independence: for u∈BU let
{

ϕu
}

u∈BU
⊂U ′,

{
ψv
}

v∈BV
⊂

V ′be the dual bases. Then ϕuψvis a bilinear map U ×V → F , and the sets {u⊗ v}(u,v)∈BU×BV
and{

ϕ̃uψv
}
(u,v)∈BU×BV

are dual bases. �

COROLLARY 67. dimF(U⊗V ) = dimF U ·dimF V .

1.4.3. (Lecture 11, 29/1/2014).

1.4.4. Symmetric and antisymmetric tensor products (Lecture 13, 3/2/2014). In this sec-
tion we assume char(F) = 0.

Let (12) ∈ S2 act on V ⊗V by exchanging the factors (why is this well-defined?).

LEMMA 68. Let T ∈EndF(U) satisfy T 2 = Id. Then U is the direct sum of the two eigenspaces.

DEFINITION 69. Sym2V and
∧2V are the eigenspaces.

PROPOSITION 70. Generating sets and bases.

In general, let Sk act on V⊗k.
• What do we mean by that? Well, this classifies n-linear maps V ×·· ·×V → Z. Universal

property gives isom of (U⊗V )⊗W , U⊗ (V ⊗W ).
• Why action well-defined? After all, the set of pure tensors is nonlinear. So see first as

multilinear map V n→V⊗n.
• Single out Symk V ,

∧k V . Note that there are other representations.
• Claim: bases

1.4.5. Bases of Symk,
∧k, determinants (Lecture 14, 5/2/2014).

PROPOSITION 71. Symmetric/antisymmetric tensors are generating sets; bases coming from
subsets of basis.

Tool: the maps P±k : V⊗k→V⊗k given by P±k (v1⊗·· ·⊗ vk)=
1
k! ∑σ∈Sk

(±)σ

(
vσ(1)⊗·· ·⊗ vσ(k)

)
.

LEMMA 72. These are well defined (extensions of linear maps). Fix elements of Symk V ,
∧k V

respectively, images are in those subspaces (check τ ◦P±k = (±)τP±k ). Conclude that image is
spanned by image of basis.

• Exterior forms of top degree and determinants.
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Math 412: Problem Set 4 (due 7/2/2014)

Practice
P1. Let U,V be vector spaces and let U1 ⊂U , V1 ⊂V be subspaces.

(a) “Naturally” embed U1⊗V1 in U⊗V .
(b) Is (U⊗V )/(U1⊗V1) isomorphic to (U/U1)⊗ (V/V1)?

P2. Let (·, ·) be a non-degenerate bilinear form on a finite-dimensional vector space U , defined by
the isomorphism g : U →U ′ such that (u,v) = (gu)(v).
(a) For T ∈ End(U) define T † = g−1T ′g where T ′ is the dual map. Show that T † ∈ End(U)

satisfies (u,T v) =
(
T †u,v

)
for all u,v ∈V .

(b) Show that (T S)† = S†T †.
(c) Show that the matrix of T † wrt an (·, ·)-orthonormal basis is the transpose of the matrix of

T in that basis.
Bilinear forms

In problems 1,2 we assume 2 is invertible in F , and fix F-vector spaces V,W .
1. (Alternating pairings and symplectic forms) Let V,W be vector spaces, and let [·, ·] : V ×V →

W be a bilinear map.
(a) Show that (∀u,v ∈V : [u,v] =− [v,u])↔ (∀u ∈V : [u,u] = 0) (Hint: consider u+ v).
DEF A form satisfying either property is alternating. We now suppose [·, ·] is alternating.
(b) The radical of the form is the set R = {u ∈V | ∀v ∈V : [u,v] = 0}. Show that the radical

is a subspace.
(c) The form [·, ·] is called non-degenerate if its radical is {0}. Show that setting [u+R,v+R] def

=
[u,v] defines a non-degenerate alternating bilinear map (V/R)× (V/R)→W .

RMK Note that you need to justify each claim, starting with “defines”.

2. (Darboux’s Theorem) Suppose now that V is finite-dimensional, and that [·, ·] : V ×V → F is
a non-degenerate alternating form.
DEF The orthogonal complement of a subspace U ⊂V is a set U⊥= {v ∈V | ∀u ∈U : [u,v] = 0}.
(a) Show that U⊥ is a subspace of V .
(b) Show that the restriction of [·, ·] to U is non-degenerate iff U ∩U⊥ = {0}.
(*c) Suppose that the conditions of (b) hold. Show that V =U ⊕U⊥, and that the restriction

of [·, ·] to U⊥ is non-degenerate.
(d) Let u ∈ V be non-zero. Show that there is u′ ∈ V such that [u,u′] 6= 0. Find a basis

{u1,v1}to U = Span{u,u′} in which the matrix of [·, ·] is
(

0 1
−1 0

)
.

(e) Show that dimF V = 2n for some n, and that V has a basis {ui,vi}
n
i=1 in which the matrix

of [·, ·] is block-diagonal, with each 2×2 block of the form from (d).
RECAP Only even-dimensional spaces have non-degenerate alternating forms, and up to choice

of basis, there is only one such form.
Tensor product

3. (Preliminary step) Let U,V be finite-dimensional.
(a) Construct a natural isomorphism End(U⊗V )→ Hom(U,U⊗End(V )).
(b) Generalize this to a natural isomorphism Hom(U⊗V1,U⊗V2)→Hom(U,U⊗Hom(V1,V2)).
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4. Let U,V be vector spaces with U finite-dimensional, and let A ∈ Hom(U,U ⊗V ). Given a
basis

{
u j
}dimU

j=1 of U let vi j ∈ V be defined by Au j = ∑i ui⊗ vi j and define TrA = ∑
dimU
i=1 vii.

Show that this definition is independent of the choice of basis.

5. (Inner products) Let U,V be inner product spaces (real scalars, say).
(a) Show that 〈u1⊗ v1,u2⊗ v2〉U⊗V

def
= 〈u1,u2〉U 〈v1,v2〉V extends to an inner product on U ⊗

V .
(b) Let A∈ End(U), B∈ End(V ). Show that (A⊗B)† = A†⊗B† (for a definition of the adjoint

see practice problem P2).
(c) Let P ∈ End(U⊗V ), interpreted as an element of Hom(U,U⊗End(V )) as in 1(b). Show

that (TrU P)† = TrU
(
P†).

(*d) [Thanks to J. Karczmarek] Let w ∈ U ⊗V be non-zero, and let Pw ∈ End(U ⊗V ) be
the orthogonal projection on w. It follows from 3(a) that TrU Pw ∈ End(V ) and TrV Pw ∈
End(U) are both Hermitian. Show that their non-zero eigenvalues are the same.

Supplementary problems
A. (Extension of scalars) Let F ⊂ K be fields. Let V be an F-vectorspace.

(a) Considering K as an F-vectorspace (see PS1), we have the tensor product K⊗F V (the sub-
script means “tensor product as F-vectorspaces”). For each x ∈ K defining a x(α⊗ v) def

=
(xα)⊗v. Show that this extends to an F-linear map K⊗F V → K⊗F V giving K⊗F V the
structure of a K-vector space. This construction is called “extension of scalars”

(b) Let B ⊂ V be a basis. Show that {1⊗ v}v∈B is a basis for K⊗F V as a K-vectorspace.
Conclude that dimK (K⊗F V ) = dimF V .

(c) Let VN = SpanR
(
{1}∪{cos(nx),sin(nx)}N

n=1

)
. Then d

dx : VN → VN is not diagonable.

Find a different basis for C⊗RVN in which d
dx is diagonal. Note that the elements of your

basis are not “pure tensors”, that is not of the form a f (x) where a ∈ Cand f = cos(nx) or
f = sin(nx).

B. DEF: An F-algebra is a triple (A,1A,×) such that A is an F-vector space, (A,0A,1A+,×) is a
ring, and (compatibility of structures) for any a∈ F and x,y∈ A we have a ·(x×y) = (a ·x)×y.
Because of the compatibility from now on we won’t distinguish the multiplication in A and
scalar multiplication by elements of F .
(a) Verify that C is an R-algebra, and that Mn(F) is an F-algebra for all F .
(b) More generally, verify that if R is a ring, and F ⊂ R is a subfield then R has the structure

of an F-algebra. Similarly, that EndF(V ) is an F-algebra for any vector space V .
(c) Let A,B be F-algebras. Give A⊗F B the structure of an F-algebra.
(d) Show that the map F → A given by a 7→ a ·1A gives an embedding of F-algebars F ↪→ A.
(e) (Extension of scalars for algebras) Let K be an extension of F . Give K⊗F A the structure

of a K-algebra.
(f) Show that K⊗F EndF(V )' EndK (K⊗F V ).

C. The center Z(A) of a ring is the set of elements that commute with the whole ring.
(a) Show that the center of an F-algebra is an F-subspace, containing the subspace F ·1A.
(b) Show that the image of Z(A)⊗Z(B) in A⊗B is exactly the center of that algebra.
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Math 412: Supplementary Problem Set on Categories

In the second half of the 20th century it became clear that, in some sense, it is the functions that
are important in the theory of an algebraic structure more than the structures themselves. This has
been formalized in Category Theory, and the categorical point of view has been underlying much
of the constructions in 412. Here’s a taste of the ideas.

First examples
1. Some ideas of linear algebra can be expressed purely in terms of linear maps.

(a) Show that {0} is the unique (up to isomorphism) vector space U such that for all vector
spaces Z, HomF(U,Z) is a singleton.

(b) Show that {0} is the unique (up to isomorphism) vector space U such that for all vector
spaces Z, HomF(Z,U) is a singleton.

(c) Let f ∈ HomF(U,V ). Show that f is injective iff for all vector spaces Z, and all g1,g2 ∈
Hom(Z,U), f ◦g1 = f ◦g2 iff g1 = g2.

(d) Let f ∈ HomF(U,V ). Show that f is surjective iff for all vector spaces Z, and all g1,g2 ∈
Hom(V,Z), g1 ◦ f = g2 ◦ f iff g1 = g2.

(e) Show that U ⊕V (the vector standard space structure on U ×V , together with the map
u 7→ (u,0)and v 7→ (0,v)) has the property that for any vector space Z, the map HomF(U⊕
V,Z)→ HomF(U,Z)×HomF(V,Z) given by restriction is a linear isomorphism.

(f) Suppose that the triple (W, ιU , ιV ) of a vector space W and maps from U,V to W respec-
tively satisfies the property of (e). Show that there is a unique isomorphism ϕ : W →U⊕V
such that ϕ ◦ ιU is the inclusion of U in U⊕V , and similarly for V .

2. (The category of sets)
(a) Show that /0 is the unique set U such that for all sets X , XU is a singleton.
(b) Show that 1 = { /0} is the (up to bijection) set U such that for all sets X , UX is a singleton.
(c) Let f ∈ Y X . Show that f is 1-1 iff for all sets Z, and all g1,g2 ∈ XZ , f ◦ g1 = f ◦ g2 iff

g1 = g2.
(d) Let f ∈ Y X . Show that f is onto iff for all sets Z, and all g1,g2 ∈ ZY , g1 ◦ f = g2 ◦ f iff

g1 = g2.
(e) Given sets X1,X2 show that the disjoint union X1tX2 = X1×{1}∪X2×{2} together with

the maps ι j(x) = (x, j) has the property that for any Z, the map ZX1tX2 → ZX1×ZX2 given
by restriction: f 7→ ( f ◦ ι1, f ◦ ι2) is a bijection. If X1,X2 are disjoint, show that X1 ∪X2
with ι j the identity maps has the same property.

(f) Suppose that the triple (U, ι ′1, ι
′
2) of a set U and maps ι ′j : X j→U satisfies the property of

(e). Show that there is a unique bijection ϕ : U → X1tX2 such that ϕ ◦ ι ′j = ι j.
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Categories
Roughly speaking, the “category of Xs” consists of all objects of type X, for each two such

objects of all relevant maps between them, and of the composition rule telling us who to compose
maps between Xs. We formalize this as follows:

DEFINITION. A category is a triple C = (V,E,h, t,◦, Id) where: V is a class called the ob-
jects of C, E is a class called the arrows of C, h, t : E → V are maps assigning to each ar-
row its “head” and “tail” objects, Id : V → E is map, and ◦ ⊂ (E×E)× E is a partially de-
fined function (see below) called composition. We suppose that for each two objects X ,Y ∈ V ,
HomC(X ,Y ) def

= {e ∈ E | t(e) = X ,h(e) = Y} is a set, and then have:
• For f ,g ∈ E, f ◦g is defined iff h(g) = t(e), in which case f ◦g ∈ HomC(t(g),h( f )).
• For each X ∈V , IdX ∈ HomC(X ,X) and for all f , f ◦ Idt( f ) = Idh( f ) ◦ f = f .
• ◦ is associative, in the sense that one of ( f ◦g)◦h and f ◦ (g◦h) is defined then so is the

other, and they are equal.
In other words, for each three objects X ,Y,Z we have a map ◦ : Hom(X ,Y )×Hom(Y,Z) →
Hom(X ,Z) which is associative, and respects the distinguished “identity” map.

EXAMPLE. Some familiar categories:
• Set: the category of sets. Here HomSet(X ,Y ) = Y X is the set of set-theoretic maps from

X to Y , composition is composition of functions, and IdX is the identity map X → X .
• Top: the category of topological spaces with continuous maps. Here HomTop(X ,Y ) =

C(X ,Y ) is the set of continuous maps X → Y .
• Grp: the category of groups with group homomorphims. HomGrp(G,H) is the set of

group homomorphisms.
• Ab: the category of abelian groups. Note that for abelian groups A,B we have HomAb(A,B)=

HomGrp(A,B) [the word for this is “full subcategory”]
• VectF : the category of vector spaces over the field F . Here HomVectF (U,V )=HomF(U,V )

is the space of linear maps U →V .

3. (Formalization of familiar words) For each category above (except Set) express the statement
IdX ∈HomC(X ,X) ◦ : Hom(X ,Y )×Hom(Y,Z)→Hom(X ,Z) as a familiar lemma. For exam-
ple, “the identity map X → X is continuous” and “the composition of continuous functions is
continuous”.
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Properties of a single arrow and a single object

DEFINITION. Fix a category C, objects X ,Y ∈ C, and an arrow f ∈ HomC(X ,Y ).
• Call f a monomorphism if for every object Z and every two arrows g1,g2 ∈ Hom(Z,X)

we have f ◦g1 = f ◦g2 iff g1 = g2.
• Call f an epimorphism if for every object Z and every two arrows g1,g2 ∈ Hom(Y,Z) we

have g1 ◦ f = g2 ◦ f iff g1 = g2.
• Call f an isomorphism if there is an arrow f−1 ∈HomC(Y,X) such that f−1 ◦ f = IdX and

f ◦ f−1 = IdY .

4. Show that two sets are isomorphic iff they have the same cardinality,

5. Suppose that f is an isomorphism.
(a) Show that f−1 is an isomorphism.
(b) Show that f is a monomorphism and an epimorphism.
(c) Show that there is a unique g ∈ HomC(Y,X) satisfying the properties of f−1.
(d) Show that composition with f gives bijections HomC(X ,Z)→HomC(Y,Z) and HomC(W,X)→

HomC(W,Y ) which respect composition.
RMK Part (d) means that isomorphic objects “are the same” as far as the category is con-

cerned.

6. For each category in the example above:
(a) Show that f is a monomorphism iff it is injective set-theoretically.
(b) Show that f is an epimorphism iff it is surjective set-theoretically, except in Top.
(c) Which continuous functions are epimorphisms in Top?

DEFINITION. Call an object I ∈Cc initial if for every object X , HomC(I,X) is a singleton. Call
F ∈ C final if for every X ∈ C, HomC(X ,F) is a singleton.

7. (Uniqueness)
(a) Let I1, I2 be initial. Show that there is a unique isomorphism f ∈ HomC(I1, I2).
(b) The same for final objects.In this section we assume char(F) = 0.

8. (Existence)
(a) Show that the /0 is initial and { /0} is final in Set. Why is { /0} not an initial object?
(b) Show that {0} is both initial and final in VectF .
(c) Find the initial and final objects in the categories of groups and abelian groups.
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Sums and products

DEFINITION. Let {Xi}i∈I ⊂ C be objects.
• Their coproduct is an object U ∈ C together with maps ui ∈ HomC(Xi,U) such that for

every object Z the map Hom(U,Z)→
Ś

i∈I HomC(Xi,U) given by f 7→ ( f ◦ui)i∈I is a
bijection.
• Their product is an object P ∈ C together with maps pi ∈ HomC(P,Xi) such that for every

object Z the map Hom(Z,U)→
Ś

i∈I HomC(U,Xi) given by f 7→ (pi ◦ f )i∈I is a bijection.

9. (Uniqueness)
(a) Show that if U,U ′ are coproducts then there is a unique isomorphism ϕ ∈ HomC(U,U ′)

such that ϕ ◦ui = u′i.
(b) Show that if P,P′ are products then there is a unique isomorphism ϕ ∈ HomC(P,P′) such

that p′i ◦ϕ = pi.

10. (Existence)
(a) In the category Set.

(i) Show that
⋃

i∈I (Xi×{i}) with maps ui(x) = (x, i) is a coproduct. In particular, if Xi
are disjoint show that

⋃
i∈I Xi is a coproduct.

(ii) Show that
Ś

i∈I Xi with maps p j ((xi)i∈I) = x j is a product.
(b) In the category Top.

(i) Show that [0,2) = [0,1)∪ [1,2) (with the inclusion maps) is a coproduct in Set but not
in Top (subspace topologies from R).

(ii) Show that
⋃

i∈I (Xi×{i}) with the topology T = {
⋃

i∈I Ai×{i} | Ai ⊂ Xi open} is a
coproduct .

(iii) Show that the product topology on
Ś

i∈I Xi makes it into a product.
(c) In the category VectF .

(i) Show that ⊕i∈IXi is a coproduct .
(ii) Show that ∏i∈I Xi is a product.

(d) In the category Grp.
(i) Show that the “coordinatewise” group structure on

Ś

i∈I Gi is a product.
– The coproduct exists, is called the free product of the groups Gi, and is denoted ∗i∈IGi.

Challenge

A category can be thought of as a “labelled graph” – it has a set of vertices (the objects), a
set of directed edges (the arrows), and a composition operator and marked identity morphism, but
in fact every vertex has a “label” – the object it represents, and every arrow similarly has a label.
Suppose you are only given the combinatorial data, without the “labels” (imagine looking at the
category of groups as a graph and then deleting the labels that say which vertex is which group).
Can you restore the labels on the objects? Given that, can you restore the labels on the arrows? [up
to automorphism of each object]?

This is easy in Set, not hard in Top and VectF , a challenge in Ab and really difficult in Grp.
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Math 412: Problem Set 5 (due 14/2/2014)

Tensor products of maps

1. Let U,V be finite-dimensional spaces, and let A ∈ End(U), B ∈ End(V ).
(a) Show that (u,v) 7→ (Au)⊗ (Bv) is bilinear, and obtain a linear map A⊗B ∈ End(U⊗V ).
(b) Suppose A,B are diagonable. Using an appropriate basis for U ⊗V , Obtain a formula for

det(A⊗B) in terms of det(A) and det(B).
(c) Extending (a) by induction, show that A⊗k induces maps Symk A ∈ End(Symk V ) and∧k A ∈ End(

∧k V ).
(**d) Show that the formula of (b) holds for all A,B.

2. Suppose 1
2 ∈ F , and let U be finite-dimensional. Construct isomorphisms

{ symmetric bilinear forms on U}↔
(
Sym2U

)′↔ Sym2 (U ′) .
Structure Theory

3. Let L be a lower-triangular square matrix with non-zero diagonal entries.
(a) Give a “forward substitution” algorithm for solving Lx = b efficiently.
(b) Give a formula for L−1, proving in particular that L is invertible and that L−1 is again

lower-triangular.
RMK We’ll see that if A ⊂ Mn(F) is a subspace containing the identity matrix and closed

under matrix multiplication, then the inverse of any matrix in A belongs to A, giving an
abstract proof of the same result).

4. Let U ∈ Mn(F) be strictly upper-triangular, that is upper triangular with zeroes along the
diagonal. Show that Un = 0 and construct such U with Un−1 6= 0.

5. Let V be a finite-dimensional vector space, T ∈ End(V ).
(*a) Show that the following statements are equivalent:

(1) ∀v ∈V : ∃k ≥ 0 : T kv = 0; (2) ∃k ≥ 0 : ∀v ∈V : T kv = 0.
DEF A linear map satisfying (2) is called nilpotent. Example: see problem 4.
(b) Find nilpotent A,B ∈M2(F) such that A+B isn’t nilpotent.
(c) Suppose that A,B ∈ End(V ) are nilpotent and that A,B commute. Show that A+ B is

nilpotent.
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Supplementary problems

A. (The tensor algebra) Fix a vector space U .
(a) Extend the bilinear map ⊗ : U⊗n ×U⊗m → U⊗n ⊗U⊗m ' U⊗(n+m) to a bilinear map
⊗ :

⊕
∞
n=0U⊗n×

⊕
∞
n=0U⊗n→

⊕
∞
n=0U⊗n.

(b) Show that this map ⊗ is associative and distributive over addition. Show that 1F ∈ F '
U⊗0 is an identity for this multiplication.

DEF This algebra is called the tensor algebra T (U).
(c) Show that the tensor algebra is free: for any F-algebra A and any F-linear map f : U → A

there is a unique F-algebra homomorphism f̄ : T (U)→ A whose restriction to U⊗1 is f .

B. (The symmetric algebra). Fix a vector space U .
(a) Endow

⊕
∞
n=0 SymnU with a product structure as in 3(a).

(b) Show that this creates a commutative algebra Sym(U).
(c) Fixing a basis {ui}i∈I ⊂U , construct an isomorphism F

[
{xi}i∈I

]
→ Sym∗U .

RMK In particular, Sym∗ (U ′) gives a coordinate-free notion of “polynomial function on U”.
(d) Let ICT (U) be the two-sided ideal generated by all elements of the form u⊗ v− v⊗u ∈

U⊗2. Show that the map Sym(U)→ T (U)/I is an isomorphism.
RMK When the field F has finite characteristic, the correct definition of the symmetric algebra

(the definition which gives the universal property) is Sym(U)
def
= T (U)/I, not the space of

symetric tensors.

C. Let V be a (possibly infinite-dimensional) vector space, A ∈ End(V ).
(a) Show that the following are equivalent for v ∈V : (1) dimF SpanF {Anv}∞

n=0 < ∞;
(2) there is a finite-dimensional subspace v ∈W ⊂V such that AW ⊂W .

DEF Call such v locally finite, and let Vfin be the set of locally finite vectors.
(b) Show that Vfin is a subspace of V .
(c) A A is called locally nilpotent for every v ∈V there is n≥ 0 such that Anv = 0 (condition

(1) of 5(a)). Find a vector space V and a locally nilpotent map A ∈ End(V ) which is not
nilpotent.

(*d) A is called locally finite if Vfin = V , that is if every vector is contained in a finite-
dimensional A-invariant subspace. Find a space V and locally finite linear maps A,B ∈
End(V ) such that A+B is not locally finite.
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CHAPTER 2

Structure Theory

2.1. Introduction (Lecture 15,7/2/14)

2.1.1. The two paradigmatic problems. Fix a vector space V of dimension n < ∞ (in this
chapter, all spaces are finite-dimensional unless stated otherwise), and a map T ∈ End(V ). We will
try for two kinds of structural results:

(1) [“decomposition”] T = RS where R,S ∈ End(V ) are “simple”
(2) [“form”] There is a basis {vi}

n
i=1 ⊂V in which the matrix of T is “simple”.

EXAMPLE 73. (From 1st course)
(1) (Gaussian elimination) Every matrix A ∈Mn(F) can be written in the form A = E1 · · ·Ek ·

Arr where Ei are “elementary” (row operations or rescaling) and Arr is row-reduced.
(2) (Spectral theory) Suppose T is diagonable. Then there is a basis in which T is diagonal.

As an example of how to use (1), suppose det(A) is defined for matrices by column expansion.
Then can show (Lemma 1) that det(EX) = det(X) whenever E is elementary and that (Lemma 2)
det(AX) = det(X) whenever A is row-reduced. One can then prove

THEOREM 74. For all A,B, det(AB) = det(A)det(B).

PROOF. Let D = {A | ∀X : det(AX) = det(A)det(X)}. Then we know that Arr ∈ cD and that if
A∈D then for any elementary E, det((EA)X)= det(E(AX))= det(E)det(AX)= det(E)det(A)det(X)=
det(EA)det(X) so EA ∈ D as well. It now follows from Gauss’s Theorem that D is the set of all
matrices. �

2.1.2. Triangular matrices.

DEFINITION 75. A ∈Mn(F) is upper (lower) triangular if ...

Significance: these are very good for computation. For example:

LEMMA 76. The upper-triangular matrix U is invertible iff its diagonal entries are non-zero.

ALGORITHM 77 (Back-substitution). Suppose upper-triangular U is invertible. Them the so-

lution to Ux = b is given by setting xi =
bi−∑

n
j=k+1 ui jx j

uii
for i = n,n−1,n−2, · · · ,1.

REMARK 78. Note that the algorithm does exactly as many multiplications as non-zero entries
in U . Hence better than Gaussian elimination for general matrix (O(n3)), really good for sparse
matrix, and doesn’t require storing the matrix entries only the way to calculate ui j (in particular no
need to find inverse).

EXERCISE 79. (1) Give formula for inverse of upper-triangular matrix (2) Develop forward-
substitution algorithm for lower-triangular matrices.
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COROLLARY 80. If A = LU we can efficiently solve Ax = b.

Note that we don’t like to store inverses. For example, because they are generally dense matri-
ces even if L,U are sparse.

We now try to look for a vector-space interpretation of being triangular. For this note that if
U ∈Mn(F) is triangular then

Ue1 = u11e1 ∈ Span{e1}
Ue2 = u12e1 +u22e2 ∈ Span{e1,e2}

... =
...

Uek ∈ Span{e1, . . . ,ek}
... =

... .

In particular, we found a family of subspaces Vi = Span{e1, . . . ,ei} such that U(Vi) ⊂ Vi, such
that{0}=V0 ⊂V1 ⊂ ·· · ⊂Vn = Fn and such that dimVi = i.

THEOREM 81. T ∈ End(V ) has an upper-triangular matrix wrt some basis iff there are T -
invariant subspaces {0}=V0 ⊂V1 ⊂ ·· · ⊂Vn = Fn with dimVi = i.

PROOF. We just saw necessity. For sufficiency, given Vi choose for 1 ≤ i ≤ n, vi ∈ Vi \Vi−1.
These exist (the dimension increases by 1), are a linearly independent set (each vector is inde-
pendent of its predecessors) and the first i span Vi (by dimension count). Finally for each i,
T vi ∈ T (Vi)⊂Vi = Span{v1, . . . ,vi} so the matrix of T in this basis is upper triangular. �

2.2. Jordan Canonical Form

2.2.1. The minimal polynomial. Recall we have an n-dimensional F-vector space V .
• A key tool for studying linear maps is studying polynomials in the maps (we saw how to

analyze maps satisfying T 2 = Id, for example).
• We will construct a gadget (the “minimal polynomial”) attached to every linear map on

V . It is a polynomial, and will tell us a lot about the map.
• Computationally speaking, this polynomial cannot be found efficiently. It is a tool of

theorem-proving in abstract algebra.

DEFINITION 82. Given a polynomial f ∈ F [x], say f = ∑
d
i=0 aixi and a map T ∈ End(V ) set

(with T 0 = Id)

f (T ) =
d

∑
i=0

aiT i .

LEMMA 83. Let f ,g ∈ F [x]. Then ( f +g)(T ) = f (T )+ g(T ) and ( f g)(T ) = f (T )g(T ). In
other words, the map f 7→ f (T ) is a linear map F [x]→ End(V ), also respecting multiplication (“a
map of F-algebras”, but this is beyond our scope).

PROOF. Do it yourself. �

• Given a linear map our first instinct is to study the kernel and the image. [Aside: the
kernel is an ideal in the algebra].
• We’ll examine the kernel and leave the image for later.
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LEMMA 84. There is a non-zero polynomial f ∈ F [x] such that f (T ) = 0. In fact, there is such
f with deg f ≤ n2.

PROOF. F [x] is finite-dimensional while EndF(V ) is finite-dimensional. Specifically, dimF F [x]≤n2
=

n2 +1 while dimF EndF(V ) = n2. �

REMARK 85. We will later show (Theorem of Cayley–Hamilton) that the characteristic poly-
nomial PT (x) = det(x Id−T ) from basic linear algebra has this property.

• Warning: we are about to divide polynomials with remainder.

PROPOSITION 86. Let I = { f ∈ F(x) | f (T ) = 0}. Then I contains a unique non-zero monic
polynomial of least degree, say m(x), and I = {g(x)m(x) | g ∈ F [x]} is the set of multiples of m.

PROOF. Let m ∈ I be a non-zero member of least degree. Dividing by the leading coefficient
we may assume m monic. Now suppose m′ is another such. Then m−m′ ∈ I (this is a subspace)
is of strictly smaller degree. It must therefore be the zero polynomial, and m is unique. Clearly if
g∈F [x] then (gm)(T ) = g(T )m(T ) = 0. Conversely, given any f ∈ I we can divide with remainder
and write f = qm+ r for some q,r ∈ F [x] with degr < degm. Evaluating at T we find r(T ) = 0,
so r = 0 and f = qm. �

DEFINITION 87. Call m(x) = mT (x) the minimal polynomial of T .

REMARK 88. We will later prove directly that degmT (x)≤ n.

EXAMPLE 89. (Minimal polynomials)
(1) T = Id, m(x) = x−1.

(2) T =

(
1
)

, T 2 = 0 so mT (x) = x2.

(3) T =

(
1 1

1

)
, T 2 =

(
1 2

1

)
so
(
T 2− Id

)
= 2(T − Id) so T 2−2T + Id = 0 so mT (x)|(x−

1)2. But T − Id 6= 0 so mT (x) = (x−1)2.

(4) T =

(
1

1

)
, T 2 = Id so mT (x) = x2−1 = (x−1)(x+1).

• In the eigenbasis
{(

1
±1

)}
the matrix is

(
1
−1

)
– we saw this in a previous class.

(5) T =

(
−1

1

)
, T 2 =− Id so mT (x) = x2 +1.

(a) If F =Q or F = R this is irreducible. No better basis.

(b) If F =C (or Q(i)) then factor mT (x) = (x− i)(x+ i) and in the eigenbasis
{(

1
±i

)}
the matrix has the form

(
−i

i

)
.

(6) V = F [x]<n (polynomials of degree less than n), T = d
dx . Then T n = 0 but T n−1 6= 0

(why?) so mT (x) = xn.
(7) [To be proved in problem set] Let D = diag(a1, . . . ,an) be diagonal, entries the distinct

numbers {b1, · · · ,br}. Then its minimal polynomial is ∏
r
i=1 (x−br) [cf (1),(4),(5)]

We now connect the minimal polynomial with the spectrum.
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LEMMA 90 (Spectral calculus). Suppose that T v = λv. Then f (T )v = f (λ )v.

PROOF. Work it out at home. �

REMARK 91. The same proof shows that if the subspace W is T -invariant (T (W ) ⊂W ) then
W is f (T )-invariant for all polynomials f .

COROLLARY 92. If λ is an eigenvalue of T then mT (λ ) = 0. In particular, if mT (0) 6= 0 then
T is invertible (0 is cannot be eigenvalue)

We now use the minimality of the minimal polynomial.

THEOREM 93. T is invertible iff mT (0) 6= 0.

PROOF. Suppose that T is invertible and that ∑
d
i=1 aiT i = 0 [note a0 = 0 here]. Then this is not

the minimal polynomial since multiplying by T−1 also gives
d−1

∑
i=0

ai+1T i = 0 .

�

COROLLARY 94. λ ∈ F is an eigenvalue of T iff λ is a root of mT (x).

PROOF. Let S=T−λ Id. Then mS(x)=mT (x+λ ). Then λ ∈SpecF(T ) ⇐⇒ S not invertible ⇐⇒
mS(0) = 0 ⇐⇒ mT (λ ) = 0. �

REMARK 95. The characteristic polynomial PT (x) also has this property – this is how eigen-
values are found in basic linear algebra.

2.2.2. Generalized eigenspaces. Continue with T ∈ EndF(V ), dimF(V ) = n. Recall that T is
diagonable iff V is the direct sum of the eigenspace. For non-diagonable maps we need something
more sophisticated.

PROBLEM 96. Find a matrix A ∈M2(F) which only has a 1-d eigenspace.

DEFINITION 97. Call v ∈ V a generalized eigenvector of T if for some λ ∈ F and k ≥ 1,
(T −λ )k v= 0. Let Vλ ⊂V denote the set of generalized λ -eigenvectors and 0. Call λ a generalized
eigenvalue of T if Vλ 6= {0}.

In particular, if T v = λv then v ∈Vλ .

PROPOSITION 98 (Generalized eigenspaces). (1) Each Vλ is a T -invariant subspace.
(2) Let λ 6= µ . Then (T −µ) is invertible on Vλ .
(3) Vλ 6= {0} iff λ ∈ SpecF(T ).

PROOF. Let v,v′ ∈Vλ be killed by (T −λ )k ,(T −λ )k′ respectively. Then αv+βv′ is killed by
(T −λ )max{k,k′}. Also, (T −λ )k T v = T (T −λ )k v = 0 so T v ∈Vλ as well.

Let v∈Ker(T −µ) be non-zero. By Lemma 90, for any k we have (T −λ )k v = (µ−λ )k v 6= 0
so v /∈Vλ .

Finally, given λ and non-zero v∈Vλ let k be minimal such that (T −λ )k v= 0. Then (T −λ )k−1 v
is non-zero and is an eigenvector of eigenvalue λ . �

THEOREM 99. The sum
⊕

λ∈SpecF (T )Vλ ⊂V is direct.
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PROOF. Let ∑
r
i=1 vi = 0 be a minimal dependence with vi ∈ Vλi for distinct λi. Applying

(T −λr)
k for k large enough to kill vr we get the dependence.

r−1

∑
i=1

(T −λr)
k vi = 0 .

Now (T −λr)
k vi ∈ Vλi since these are T -invariant subspaces, and for 1 ≤ i ≤ r− 1 is non-zero

since T −λr is invertible there. This shorter dependence contradicts the minimality. �

REMARK 100. The sum may very well be empty – there are non-trivial maps without eigen-

values (for example
(

−1
1

)
∈M2(R)).

2.2.3. Algebraically closed field. We all know that sometimes linear maps fail to have eigen-
values, even though they “should”. In this course we’ll blame the field, not the map, for this
deficiency.

DEFINITION 101. Call the field F algebraically closed if every non-constant polynomial f ∈
F [x] has a root in F . Equivalently, if every non-constant polynomial can be written as a product of
linear factors.

FACT 102 (Fundamental theorem of algebra). C is algebraically closed.

REMARK 103. Despite the title, this is a theorem of analysis.

Discussion. The goal is to create enough eigenvalues so that the generalized eigenspaces ex-
plain all of V . The first point of view is that we can simple “define the problem away” by restrict-
ing to the case of algebraically closed fields. But this isn’t enough, since sometimes we are given
maps over other fields. This already appears in the diagonable case, dealt with in 223: we can view(

−1
1

)
∈M2(R) instead as

(
−1

1

)
∈M2(C), at which point it becomes diagonable. In other

words, we can take a constructive point of view:
• Starting with any field F we can “close it” by repeatedly adding roots to polynomial

equations until we can’t, obtaining an “algebraic closure” F̄ [the difficulty is in showing
the process eventually stops].

– This explains the “closed” part of the name – it’s closure under an operation.
– [Q: do you need the full thing? A: In fact, it’s enough to pass to the splitting field of

the minimal polynomial]
• We now make this work for linear maps, with three points of view:

(1) (matrices) Given A ∈Mn(F) view it as A ∈Mn(F̄), and apply the theory there.
(2) (linear maps) Given T ∈ EndF(V ), fix a basis {vi}

n
i=1 ⊂ V , make the formal span

V̄ =
⊕n

i=1 F̄vi and extends T to V̄ by the property of having the same matrix.
(3) (coordinate free) Given V over F set V̄ = F̄⊗F V (considering F̄ as an F-vectorspace),

and extend T (by T̄ = IdK⊗FT ).
Back to the stream of the course.

LEMMA 104. Suppose F is algebraically closed and that dimF V ≥ 1. Then every T ∈EndF(V )
has an eigenvector.

PROOF. mT (x) has roots. �
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We suppose now that F is algebraically closed, in other words that every linear map has an
eigenvalue. The following is the key structure theorem for linear maps:

THEOREM 105. (with F algebraically closed) We have V =
⊕

λ∈SpecF (T )Vλ .

PROOF. Let mT (x) = ∏
r
i=1 (x−λi)

ki and let W =
⊕r

i=1Vλi . Supposing that W 6= V , let V̄ =
V/W and consider the quotient map T̄ ∈EndF(V̄ ) defined by T̄ (v+W )= T v+W . Since dimF V̄ ≥
1, T̄ has an eigenvalue there. We first check that this eigenvalue is one of the λi. Indeed, for any
polynomial f ∈F [x], f (T̄ )(v+W ) = ( f (T )v)+W , and in particular mT (T̄ ) = 0 and hence mT̄ |mT .

Renumbering the eigenvalues, we may assume V̄λr 6= {0}, and let v∈V be such that v+W ∈ V̄λr

is non-zero, that is v /∈W . Since ∏
r−1
i=1 (T̄ −λi)

ki is invertible on V̄λr , u = ∏
r−1
i=1 (T −λi)

ki v /∈W .
But (T −λr)

kr u = mT (T )v = 0 means that u ∈VλR ⊂W , a contradiction. �

PROPOSITION 106. In mT (x) = ∏
r
i=1 (x−λi)

ki , the number ki is the minimal k such that
(T −λi)

k = 0 on Vλi .

PROOF. Let Ti be the restriction of T to Vλi . Then (Ti−λi)
k is the minimal polynomial by

assumption. But mT (Ti) = 0. It follows that (x−λi)
k |mT and hence that k ≤ ki. Conversely, since

∏ j 6=i
(
T −λ j

)k j is invertible on Vλi , we see that (T −λi)
ki = 0 there, so ki ≥ k. �

Summary of the construction so far:
• F algebraically closed field, dimF V = n, T ∈ EndF(V ).
• mT (x) = ∏

r
i=1 (x−λi)

ki the minimal polynomial.
• Then V =

⊕r
i=1Vλi where on Vλi we have(T −λi)

ki = 0 but (T −λi)
ki−1 6= 0.

We now study the restriction of T to each Vλi , via the map N = T −λi, which is nilpotent of degree
ki.

2.2.4. Nilpotent maps. We return to the case of a general field F .

DEFINITION 107. A map N ∈ EndF(V ) such that Nk = 0 for some k is called nilpotent. The
smallest such k is called its degree of nilpotence.

LEMMA 108. Let N ∈ EndF(V ) be nilpotent. Then its degree of nilpotence is at most dimF V .

PROOF. Exercise. �

PROOF. Define subspaces Vk by V0 = V and Vi+1 = N(Vi). Then V = V0 ⊃ V1 · · · ⊃ Vi ⊃ ·· · .
If at any stage Vi = Vi+1 then Vi+ j = Vi for all j ≥ 1, and in particular Vi = {0} (since Vk = 0). It
follows that for i < k, dimVi+1 < dimVi and the claim follows. �

COROLLARY 109 (Cayley–Hamilton Theorem). Suppose F is algebraically closed. Then
mT (x)|pT (x) and, equivalently, pT (T ) = 0. In particular, degmT ≤ dimF V .

Recall the that the characteristic polynomial of T is the polynomial pT (x) = det(x Id−T ) of
degree dimF V , and that is also has the property that λ ∈ SpecF(T ) iff pT (λ ) = 0.

PROOF. The linear map x Id−T respects the decomposition V =
⊕r

i=1Vλi . We thus have
pT (x) = ∏

r
i=1 pT �Vλi

(x). Since pT �Vλ
(x) has the unique root λ , it is the polynomial (x−λ )dimF Vλ ,

so

pT (x) =
r

∏
i=1

(x−λi)
dimVλi .
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Finally, ki is the degree of nilpotence of (T −λi) on Vλi . Thus ki ≤ dimF̄ Vλi �

We now resolve a lingering issue:

LEMMA 110. The minimal polynomial is independent of the choice of the field. In particular,
the Cayley–Hamilton Theorem holds over any field.

PROOF. Whether
{

1,T, . . . ,T d−1} ⊂ EndF(V ) are linearly dependent or not does not depend
on the field. �

THEOREM 111 (Cayley–Hamilton). Over any field we have mT (x)|pT (x) and, equivalently,
pT (T ) = 0.

PROOF. Extend scalars to an algebraic closure. This does not change either of the polynomials
mT , pT . �

We finally turn to the problem of finding good bases for linear maps, starting with the nilpotent
case. Here F can be an arbitrary field.

LEMMA 112. Let N ∈ End(V ) be nilpotent. Let B ⊂ V be a set of vectors such that N(B) ⊂
B∪{0}. Then B is linearly independent iff B∩Ker(N) is.

PROOF. One direction is clear. For the converse, let ∑
r
i=1 aivi = 0 be a minimal dependence in

B. Applying N we obtain the dependence
r

∑
i=1

aiNvi = 0 .

If all Nvi = 0 then we had a dependence in B∩Ker(N). Otherwise, no Nvi = 0 (this would
shorten the dependence), and by uniqueness it follows that, up to rescaling, N permutes the vi. But
then the same is true for any power of N, contradicting the nilpotence. �

COROLLARY 113. Let N ∈ End(V ) and let v ∈ V be non-zero such that Nkv = 0 for some k
(wlog minimal). Then

{
Niv
}k−1

i=0 is linearly independent.

PROOF. N is nilpotent on Span
{

Niv
}k−1

i=0 , this set is invariant, and its intersection with KerN
is exactly

{
Nk−1v

}
6= {0}. �

Our goal is now to decompose V as a direct sum of N subspaces (“Jordan blocks”) each of
which has a basis as in the Corollary.

THEOREM 114 (Jordan form for nilpotent maps). Let N ∈ EndF(V ) be nilpotent. We then have
a decomposition V =

⊕r
j=1Vj where each Vj is an N-invariant Jordan block.

EXAMPLE 115. A =

 1 2 3
1 2 3
−1 −2 −3

=

 1
1
−1

(1 2 3
)
.

• A2 =

 1
1
−1

(1 2 3
) 1

1
−1

(1 2 3
)
= 0, so A is nilpotent. The characterstic poly-

nomial must be x3.
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• The image of A is Span


 1

1
−1

. Since A

 3
−1
0

=

 1
1
−1

, Span


 3
−1
0

 ,

 1
1
−1


is a block.

• Taking any other vector in the kernel (say,

 2
−1
0

) we get the basis


 3
−1
0

 ,

 1
1
−1

 ,

 2
−1
0


in which A has the matrix (0 1

0

)
(0)

 .

PROOF. Let N have degree of nilpotence d and kernel W . For 1≤ k≤ d define Wk = Im(Nk)∩
W , so that W0 = W ⊃W1 ⊃Wd = {0}. Now choose a basis of W compatible with this decom-
position – in other words choose subsets Bk ⊂ Wk such that ∪k≥k′Bk is a basis for Wk′ . Let
B = ∪d−1

k=0 Bk = {vi}i∈I and for each i define ki by vi ∈ Bki . Choose ui such that Nkiui = vi, and

for 1≤ j ≤ ki set vi, j = Nki− jui so that vi,1 = ui and in general Nvi, j =

{
vi, j−1 j ≥ 1
0 j = 1

. It is clear

that SpanF
{

vi, j
}ki

j=1 is a Jordan block, and that C =
{

ui, j
}

i, j is a union of Jordan blocks. �

• The set C is linearly independent: by construction, N(C) ⊂C∪{0} and C∩W = B is
independent.
• The set C is spanning: We prove by induction on k ≤ d that SpanF(C)⊃ Ker(Nk). This

is clear for k = 0; suppose the result for 0≤ k < d, and let v∈Ker(Nk+1). Then Nkv∈Wk,
so we can write

Nkv = ∑
i:ki≥k

aivi

= ∑
i:ki≥k

aiNk (vi,k+1
)
.

It follows that

Nk

(
v− ∑

i:ki≥k
aivi,k+1

)
= 0 .

By induction, v−∑i:ki≥k aivi,k ∈ SpanF(C), and it follows that v ∈ SpanF(C).

DEFINITION 116. A Jordan basis is a basis as in the Theorem.

LEMMA 117. Any Jordan basis for N has exactly dimF Wk−1− dimF Wk blocks of length k.
Equivalently, up to permuting the blocks, N has a unique matrix in Jordan form.

PROOF. Let
{

vi, j
}

be a Jordan basis. Then KerN =Span
{

vi,1
}

, while
{

vi, j | ki ≥ k, j ≤ ki− k
}

is a basis for Im(Nk). Clearly
{

vi,1 | ki ≥ k
}

then spans Wk and the claim follows. �
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2.2.5. The Jordan canonical form.
THEOREM 118 (Jordan canonical form). Let T ∈ EndF(V ) and suppose that mT splits into lin-

ear factors in F (for example, that F is algebraically closed). Then there is a basis
{

vλ ,i, j
}

λ ,i, j
of V

such that
{

vλ ,i, j
}

i, j
⊂Vλ is a basis, and such that (T −λ )vλ ,i, j =

{
vλ ,i, j−1 j ≥ 1
0 j = 1

. Furthermore,

writing Wλ =Ker(T−λ ) for the eigenspace, we have for each λ , that 1≤ i≤ dimF Wλ and that the
number of i such that 1≤ j ≤ k is exactly dimF

(
(T −λ )k−1Vλ ∩Wλ

)
−dimF

(
(T −λ )kVλ ∩Wλ

)
.

Equivalently, T has a unique matrix in Jordan canonical form up to permuting the blocks.

COROLLARY 119. The algebraic multipicity of λ is dimF Vλ . The geometric multiplicity is the
number of blocks.

EXAMPLE 120 (Jordan forms). (1) A1 =

 2 2 3
1 3 3
−1 −2 −2

 = I +A. This has character-

istic polynomial (x−1)3, A1− I = A and we are back in example 115.
(2) (taken from Wikibooks:Linear Algebra) pB(x) = (x−6)4.

Let B =


7 1 2 2
1 4 −1 −1
−2 1 5 −1
1 1 2 8

, B′ = B−6I =


1 1 2 2
1 −2 −1 −1
−2 1 −1 −1
1 1 2 2

. Gaussian elimina-

tion shows B′ = E


3 −3 0 0
1 −2 −1 −1
−3 3 0 0
0 0 0 0

, B′2 =


0 3 3 3
0 3 3 3
0 −6 −6 −6
0 3 3 3

 and B′3 = 0. Thus

KerB′ = {(x,y,z,w)t | x = y =−(z+w)} is two-dimensional. We see that the image of
B′2 is spanned by (3,3,−6,3)t , which is (say) B′(2,−1,−1,2)t which (being the last
column) was B′(0,0,0,1)t . Another vector in the kernel is (−1,−1,1,0)t , and we get the

Jordan basis




0
0
0
1

 ,


2
−1
−1
2

 ,


3
3
−6
3

 ,


−1
−1
1
0


.

(3) C =


4 0 1 0
2 2 3 0
−1 0 2 0
4 0 1 2

 acting on V = R4 with pC(x) = (x−2)2 (x−3)2. Then C− 2I =


2 0 1 0
2 0 3 0
−1 0 0 0
4 0 1 0

, C−3I =


1 0 1 0
2 −1 3 0
−1 0 −1 0
4 0 1 −1

, (C−3I)2 =


0 0 0 0
−3 1 −4 0
0 0 0 0
−1 0 2 1

. Thus

Ker(C−2I) = Span{e2,e4}, which must be the 2d generalized eigenspace V2 giving two
1×1 blocks. For λ = 3, Ker(C−3I)= {(x,y,z,w)t | z = y =−x,w = 3x}=Span{(1,−1,−1,3)t}.
This isn’t the whole generalized eigenspace, and

Ker(C−3I)2 =
{
(x,y,z,w)t | y = 3x+4z, w = x−2z

}
= Span

{
(1,−1,−1,3)t ,(1,3,0,1)t} .
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This must be the generalized eigenspace V3, since it’s 2d. We need to find the im-
age of (C−3I) [V3]. One vector is in the kernel, so we try the other one, and indeed
(C−3I)(1,3,0,1)t = (1,−1,−1,3). This gives us a 2x2 block, so in the basis


0
1
0
0

 ,


0
0
0
1

 ,


1
−1
−1
3

 ,


1
3
0
1


 the matrix would has the form


(2)

(2) (
3 1

3

)
.

Note how the image of (C−3I)2 is exactly V2 (why?)
(4) V = R6. pD(x) = t6 +3t5−10t3−15t2−9t−2 = (t +1)5(t−2):

D=


0 0 0 0 −1 −1
0 −8 4 −3 1 −3
−3 13 −8 6 2 9
−2 14 −7 4 2 10
1 −18 11 −11 2 −6
−1 19 −11 10 −2 7

, D+I =


1 0 0 0 −1 −1
0 −7 4 −3 1 −3
−3 13 −7 6 2 9
−2 14 −7 5 2 10
1 −18 11 −11 3 −6
−1 19 −11 10 −2 8

,

(D+ I)2 =


1 −1 0 1 −2 −3
−2 −16 9 −11 4 −3
−1 37 −18 17 2 21
1 35 −18 19 −2 15
−1 −53 27 −28 2 −24
2 52 −27 29 −4 21

, (D+ I)3 =


0 0 0 0 0 0
0 −54 27 −27 0 −27
0 108 −54 54 0 54
0 108 −54 54 0 54
0 −162 81 −81 0 −81
0 162 −81 81 0 81

.

(5) First, V2must be a 1-dimensional eigenspace. Gaussian elimination finds the eigenvector
(01,−2,−2,3,−3)t . Next, V−1 must be 5-dimensional. Row-reduction gives: D+ I →

1 0 0 0 −1 −1
0 0 0 1 0 −1/2
0 1 0 0 1 3/2
0 0 1 0 2 3/2
0 0 0 0 0 0
0 0 0 0 0 0

, (D+ I)2→


2 0 −1 3 −4 −5
0 2 −1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. So the Ker(D+ I)

is two-dimensional (since (D + I)2 6= 0 there will be a block of size at least 3; since
(D+ I)3has rank one, it has the 5d kernel V−1 = {x | x3 = 2x2 + x4 + x6} so the largest
block is 3, and so the other block must have size 2. We need a vector from the generalized
eigenspace in the image of (D+ I)2. Since (D+ I)3 e1 = 0 but the first column of (D+ I)2

is non-zero, we see that (D+ I)2 e1 = (1,−2,−1,1,−1,2)t has preimage (D+ I)e1 =
(1,0,−3,−2,1,−1)t , and we obtain our first block. Next, we need an eigenvector in the
kernel and image of D+ I, but any vector in the kernel is also in the image (no blocks
of size 1), so we cam take any vector in Ker(D+ I) independent of the one we already
have. Using the row-reduced form we see that (1,−1,−2,0,1,0)t is such a vector. Then
we solve 

1 0 0 0 −1 −1
0 −7 4 −3 1 −3
−3 13 −7 6 2 9
−2 14 −7 5 2 10
1 −18 11 −11 3 −6
−1 19 −11 10 −2 8

x =


1
−1
−2
0
1
0

 ,
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finding for example the vector (1,0,−1,−1,0,0)t and our second block. We conclude

that in the basis




0
1
−2
−2
3
−3

 ,


1
−2
−1
1
−1
2

 ,


1
0
−3
−2
1
−1

 ,


1
0
0
0
0
0

 ,


1
−1
−2
0
1
0

 ,


1
0
−1
−1
0
0




the matrix has the

form 

(
2
) −1 1

−1 1
−1

 (
−1 1

−1

)


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Math 412: Problem Set 6 (due 28/2/2014)

P1. (Minimal polynomials)

(a) Find the minimal polynomial of
(

1 2
3 4

)
.

(b) Show that the minimal polynomial of A =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

 is x2 (x−1)2.

(c) Find a 3×3 matrix whose minimal polynomial is x2.

P2. (Generalized eigenspaces) Let A be as in P1(b).
(a) What are the eigenvalues of A?
(b) Find the generalized eigenspaces.

The minimal polynomial

1. Let D ∈Mn(F) = diag(a1, . . . ,an) be diagonal.
(a) For any polynomial p ∈ F [x] show that p(D) = diag(p(a1), . . . , p(an)).
(b) Show that the minimal polynomial of D is mD(x) = ∏

r
j=1(x− ai j) where

{
ai j

}r
j=1 is an

enumeration of the distinct values among the ai.
(c) Show that (over any field) the matrix of P1(b) is not similar to a diagonal matrix.
(d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any

p ∈ F [x], p(U) has diagonal p(D). In particular, mD|mU .

2. Let T ∈End(V ) be diagonable. Show that every generalized eigenspace is simply an eigenspace.

3. Let S ∈ End(U), T ∈ End(V ). Let S⊕T ∈ End(U⊕V ) be the “block-diagonal map”.
(a) For f ∈ F [x] show that f (S⊕T ) = f (S)⊕ f (T ).
(b) Show that mT⊕S = lcm(mS,mT ) (“least common multiple”: the polynomial of smallest

degree which is a multiple of both).
(c) Conclude that SpecF(S⊕T ) = SpecF(S)∪SpecF(T ).
RMK See also problem A below.
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Supplementary problems

A. Let R ∈ End(U⊕V ) be “block-upper-triangular”, in that R(U)⊂U .
(a) Define a “quotient linear map” R̄ ∈ End(U⊕V/U).
(b) Let S be the restriction of R to U . Show that both mS, mR̄ divide mR.
(c) Let f = lcm[mS,mR̄] and set T = f (R). Show that T (U) = {0} and that T (V )⊂U .
(d) Show that T 2 = 0 and conclude that f | mR | f 2.
(e) Show that SpecF(R) = SpecF(S)∪SpecF(R̄).

B. Let T ∈ End(V ). For monic irreducible p ∈ F [x] define Vp =
{

v ∈V | ∃k : p(T )kv = 0
}

.
(a) Show that Vp is a T -invariant subspace of V and that mT �Vp = pk for some k ≥ 0, with

k ≥ 1 iff Vp 6= {0}. Conclude that pk|mT .
(b) Show that if {pi}r

i=1 ⊂ F [x] are distinct monic irreducibles then the sum
⊕r

i=1Vpi is direct.
(c) Let {pi}r

i=1 ⊂ F [x] be the prime factors of mT (x). Show that V =
⊕r

i=1Vpi .
(d) Suppose that mT (x) = ∏

r
i=1 pki

i (x) is the prime factorization of the minimal polynomial.
Show that Vpi = Ker pki

i (T ).
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Math 412: Problem set 7 (due 10/3/2014)

Practice

P1. Find the characteristic and minimal polynomial of each matrix:
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,


5 0 0 0 0 0
0 4 0 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

,


5 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

.

P2. Show that

0 1 α

0 0 1
0 0 0

,

0 1 0
0 0 1
0 0 0

 are similar. Generalize to higher dimensions.

The Jordan Canonical Form

1. For each of the following matrices, (i) find the characteristic polynomial and eigenvalues (over
the complex numbers), (ii) find the eigenspaces and generalized eigenspaces, (iii) find a Jordan
basis and the Jordan form.

A =


1 2 1 0
−2 1 0 1
0 0 1 2
0 0 −2 1

, B =


0 1 −1 0
0 0 0 −1
1 0 0 1
0 1 0 0

, C =


1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

 .

RMK I suggest computing by hand first even if you later check your answers with a CAS.

2. Suppose the characteristic polynomial of T is x(x−1)3(x−3)4.
(a) What are the possible minimal polynomials?
(b) What are the possible Jordan forms?

3. Let T,S ∈ EndF(V ).
(a) Suppose that T,S are similar. Show that mT (x) = mS(x).
(b) Prove or disprove: if mT (x) = mS(x) and pT (x) = pS(x) then T,S are similar.

4. Let F be algebraically closed of characteristic zero. Show that every g ∈ GLn(F) has a square
root, that is g = h2 for some h ∈ GLn(F).

5. Let V be finite-dimensional, and let A ⊂ EndF(V ) be an F-subalgebra, that is a subspace
containing the identity map and closed under multiplication (composition). Suppose that T ∈
A is invertible in EndF(V ). Show that T−1 ∈ A.

(extra credit problem on reverse)

45



Extra credit

6. (The additive Jordan decomposition) Let V be a finite-dimensional vector space, and let T ∈
EndF(V ).
DEF An additive Jordan decomposition of T is an expression T = S+N where S ∈ EndF(V )

is diagonable, N ∈ EndF(V ) is nilpotent, and S,N commute.
(a) Suppose that F is algebraically closed. Separating the Jordan form into its diagonal and

off-diagonal parts, show that T has an additive Jordan decomposition.
(b) Let S,S′ ∈ EndF(V ) be diagonable and suppose that S,S′ commute. Show that S+ S′ is

diagonable.
(c) Show that a nilpotent diagonable linear transformation vanishes.
(d) Suppose that T has two additive Jordan decompositions T = S+N = S′+N′. Show that

S = S′ and N = N′.

Supplementary problems

A. (extension of scalars for linear algebra) Let F ⊂K be fields and let V be an F-vectorspace. Let
VK = K⊗F V , where we consider K as an F-vectorspace in the natural way.
(a) Show that setting α (u⊗ v)= (αu)⊗v extends to a map K×VK→VK satisfying the axioms

of scalar multiplication for a K-vectorspace and compatible with the structure of VKas an
F-vectorspace coming from the tensor product.

(b) Let {vi}i∈I ⊂ V be a set of vectors. Show that it is linearly independent (resp. spanning)
iff {1K⊗ vi}i∈I ⊂VK is linearly independent (resp. spanning).

RMK This is how we show that the minimal polynomial does not depend on the field.
(c) For T ∈ EndF(V ) let TK = IdK⊗FT ∈ EndF(VK) be the tensor product map. Show that TK

is in fact K-linear.
(d) Show that TK ∈ EndK(VK) is the unique K-linear map such that for any basis {vi}i∈I ⊂V ,

the matrix of TK in the basis {1K⊗F vi}i∈I is the matrix of T in the basis {vi} (identification
of the matrices under the inclusion F ⊂ K).

B. (conjugacy classes in GLn(F)) Let F be a field, and let G = GLn(F).
(a) Construct a bijection between conjugacy classes in G and certain Jordan forms. Note that

the spectrum can lie in an extension field.
(b) Enumerate the conjugacy classes in GL2(Fp).
(c) Enumerate the conjugacy classes of GL3(Fp).
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CHAPTER 3

Vector and matrix norms

For the rest of the course our field of scalars is either R or C.

3.1. Review of metric spaces

DEFINITION 121. A metric space is a pair (X ,dX) where X is a set, and dX : X ×X → R≥0 is
a function such that for all x,y,z ∈ X , dX(x,y) = 0 iff x = y, dX(x,y) = dX(y,z) and (the triangle
inequality) dX(x,z)≤ dX(x,y)+dX(y,z).

NOTATION 122. For x ∈ X and r ≥ 0 we write BX (x,r) = {y ∈ X | dX(x,y)≤ r} for the closed
ball of radius r around x, B◦X(x,r) = {y ∈ X | dX(x,y)< r} for the open ball.

DEFINITION 123. Let (X ,dX) ,(Y,dY ) be metric spaces and let f : X → Y be a function.
(1) We say f is continuous if ∀x ∈ X : ∀ε > 0 : ∃δ > 0 : f (BX(x,δ ))⊂ BY ( f (x),ε).
(2) We say f is uniformly continuous ∀ε > 0 : ∃δ > 0 : ∀x ∈ X : f (BX(x,δ ))⊂ BY ( f (x),ε).
(3) We say f is Lipschitz continuous if in (2) we can take δ = Lε , in other words if for all

x 6= x′ ∈ X ,
dY
(

f (x), f (x′)
)
≤ LdX

(
x,x′
)
.

In that case we let ‖ f‖Lip denote the smallest L for which this holds.

Clearly (3)⇒ (2)⇒ (1).

LEMMA 124. The composition of two functions of type (1),(2),(3) is again a function of that
type. In particular, ‖ f ◦g‖Lip ≤ ‖ f‖Lip‖g‖Lip.

DEFINITION 125. We call the metric space (X ,dX) complete if every Cauchy sequence con-
verges.

3.2. Norms on vector spaces

Fix a vector space V .

DEFINITION 126. A norm on V is a function ‖·‖ : V → R≥0 such that ‖v‖ = 0 iff v = 0,
‖αv‖= |α|‖v‖ and ‖u+ v‖ ≤ ‖u‖+‖v‖. A normed space is a pair (V,‖·‖).

LEMMA 127. Let ‖·‖ be a norm on V . Then the function d(u,v) = ‖u− v‖ is a metric.

EXERCISE 128. The map ‖7→‖d is a bijection between norms on V and metrics on V which are
(1) translation-invariant d(u,v) = d (u+w,v+w) and (2) 1-homogenous: d (αu,αv) = |α|d (u,v).

The restriction of a norm to a subspace is a norm.
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3.2.1. Finite-dimensional examples.
EXAMPLE 129. Standard norms on Rn and Cn:
(1) The supremum norm ‖v‖

∞
= max{|vi|}n

i=1, parametrizing uniform convergence.
(2) ‖v‖1 = ∑

n
i=1 |vi|.

(3) The Euclidean norm ‖v‖2 =
(

∑
n
i=1 |vi|2

)1/2
, connected to the inner product 〈u,v〉 =

∑
n
i=1 uivi (prove4 inequality from this by squaring norm of sum).

(4) For 1 < p < ∞, ‖v‖p = (∑n
i=1 |vi|p)1/p.

PROOF. These functions are clearly homogeneous, and clearly are non-zero if v 6= 0; the only
non-trivial part is the triangle inequality (“Minkowsky’s inequality”). This is easy for p = 1,∞,
well-known for p = 2. Other cases left to supplement. �

EXERCISE 130. Show that limp→∞ ‖v‖p = ‖v‖∞
.

We have a geometric interpretation. The unit ball of a norm is the set B=B(0,1)= {v ∈V | ‖v‖ ≤ 1}.
This determines the norm ( 1

‖v‖ is the largest α such that αv ∈ B). Now applying a linear map to B
gives a the ball of a new norm.

EXERCISE 131. Draw the unit balls of

PROPOSITION 132 (Pullback). Let T : U ↪→V be an injectivel linear map. Let ‖·‖V be a norm

on V . Then ‖u‖ def
= ‖T u‖V defines a norm on U.

PROOF. Easy check. �

3.2.2. Infinite-dimensional examples. Now the norm comes first, the space second.

EXAMPLE 133. For a set X let `∞(X)=
{

f ∈ FX | sup{| f (x)| : x ∈ X}< ∞
}

, ‖ f‖
∞
= supx∈X | f (x)|.

PROOF. The map ‖·‖
∞

: XF → [0,∞] satisfies the axioms of a norm, suitably extended to in-
clude the value ∞. That the set of vectors of finite norm is a subspace follows from the scaling and
triangle inequalities. �

REMARK 134. A vector space with basis B can be embedded into `∞(B) (we’ve basically seen
this).

EXAMPLE 135. `p(N) =
{

a ∈ FN : ∑
∞
i=1 |ai|p < ∞

}
with the obvious norm.

In the continuous case we a construction from earlier in the course:

DEFINITION 136. Lp(R)= { f : R→ F [measurable] |
∫
R | f (x)|

p dx < ∞}
/
{ f | f = 0 a.e.}with

the natural norm.

REMARK 137. The quotient is essential: for actualy functions, can have
∫
| f (x)|p dx = 0 with-

out f = 0 exactly. In particular, elements of Lp(R) don’t have specific values.

FACT 138. In each equivalence class in Lp(R) there is at most one continuous representative.

So part of PDE is about whether an Lp solution can be promoted to a continuous functiuon. We
give an example theorem:

THEOREM 139 (Elliptic regularity). Let Ω⊂ R2 be a domain, and let f ∈ L2(Ω) satisfy ∆ f =
λ f distributionally:: for g ∈C∞

c (Ω),
∫

Ω
f ∆g = λ

∫
f g. Then there is a smooth function f̄ such that

∆ f = λ f pointwise and such that f = f̄ almost everywhere.
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3.2.3. Converges in the norm. While there are many norms on Rn, it turns out that there is
only one notion of convergence.

LEMMA 140. Every norm on Rn is a continuous function.

PROOF. Let M = maxi ‖ei‖. Then

‖x‖=

∥∥∥∥∥ n

∑
i=1

xiei

∥∥∥∥∥≤ n

∑
i=1
|xi|‖ei‖ ≤M ‖x‖1 .

In particular, ∣∣‖x‖−∥∥y
∥∥∣∣≤ ∥∥x− y

∥∥≤M
∥∥x− y

∥∥
1 .

�

DEFINITION 141. Call two norms equivalent if there are 0 < m≤M such that m‖x‖ ≤ ‖x‖′ ≤
M ‖x‖ holds for all x ∈V .

EXERCISE 142. This is an equivalence relation. The norms are equivalent iff the same se-
quences of vectors satisfy limn→∞ xn = 0.

THEOREM 143. All norms on Rn (and Cn) are equivalent.

PROOF. It is enough to show that they are all equivalent to ‖·‖1. Accordingly let ‖·‖ be any
other norm. Then the Lemma shows that there is M such that

‖x‖ ≤M ‖x‖1 .

Next, the “sphere”{x | ‖x‖1 = 1} is closed and bounded, hence compact. Accordingly let m =
min{‖x‖ | ‖x‖1 = 1}. Then m > 0 since ‖0‖1 = 0 6= 1. Finally, for any x 6= 0 we have

‖x‖
‖x‖1

=

∥∥∥∥ x
‖x‖1

∥∥∥∥≥ m

since
∥∥∥ x
‖x‖1

∥∥∥
1
= 1. It follows that

m‖x‖1 ≤ q‖x‖ ≤M ‖x‖1

�

3.3. Norms on matrices

DEFINITION 144. Let U,V be normed spaces. A map T : U →V is called bounded if there is
M ≥ 0 such that ‖T u‖V ≤M ‖u‖U for all u∈U . The smallest such M is called the (operator) norm
of T .

REMARK 145. Motivation: Let U be the space of initial data for an evolution equation (say
wave, or heat). Let V be the space of possible states at time t. Let T be “time evolution”. Then a
key part of PDE is finding norms in which T is bounded as a map from U to V . This shows that
solution exist, and that they are unique.

EXAMPLE 146. The identity map has norm 1. Now consider the matrix A =

(
1 1
0 1

)
acting

on R2.
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(1) As a map from `1→ `1 we have∥∥∥∥A
(

x
y

)∥∥∥∥
1
= |x+ y|+ |y| ≤ 2

∥∥∥∥(x
y

)∥∥∥∥
1
,

with equality if x = 0. Thus ‖A‖1 = 2.
(2) Next, ∥∥∥∥A

(
x
y

)∥∥∥∥2

2
= |x+ y|2 + |y|2 ≤ 3+

√
5

2

∣∣x2 + y2∣∣ .
(3) Finally, ∥∥∥∥A

(
x
y

)∥∥∥∥
∞

= max{|x+ y|, |y|} ≤ 2max{|x|, |y|}

with equality if x = y, Thus ‖A‖
∞
= 2.

EXAMPLE 147. Consider Dx : C∞
c (R)→ C∞

c (R). This is not bounded in any norm (consider
f (x) = e2πikx).

LEMMA 148. Every map of finite-dimensional spaces is bounded.

PROOF. Identify U with Rn. Then the ‖·‖U is equivalent with ‖·‖1, so there is A such that
‖u‖1 ≤ A‖u‖U . Now the map u 7→ ‖T u‖V is 1-homogenous and satisfies the triangle inequality, so
by the proof of Lemma 140 there is B so that ‖T u‖V ≤ B‖u‖1 ≤ (AB)‖u‖U . �

LEMMA 149. Let T,S be bounded and composable. Then ST is bounded and ‖ST‖ ≤ ‖S‖‖T‖.

PROOF. For any u ∈U , ‖ST u‖W ≤ ‖S‖‖T u‖V ≤ ‖S‖‖T‖‖u‖U . �

PROPOSITION 150. The operator norm is a norm on Homb(U,V ), the space of bounded maps
U →V .

PROOF. For any S,T ∈Homb(U,V ), |α|‖T‖+‖S‖ is a bound for αT +S. Since the zero map
is bounded it follows that Homb(U,V ) ⊂ Hom(U,V ) is a subspace, and setting α = 1 gives the
triangle inequality. If T 6= 0 then there is u such that T u 6= 0 at which point

‖T‖ ≥ ‖T u‖
‖u‖

> 0 .

Finally, ‖(αT )u‖= |α|‖T u‖ ≤ |α|‖T‖‖u‖ so ‖αT‖ ≤ |α|‖T‖. But then

‖T‖=
∥∥∥∥ 1

α
αT
∥∥∥∥≤ 1
|α|
‖αT‖

gives the reverse inequality. �
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Math 412: Problem set 8, due 19/3/2014

Practice: Norms

P1. Call two norms ‖·‖1 ,‖·‖2 on V equivalent if there are constants c,C such that for all v ∈V ,

c‖v‖1 ≤ ‖v‖2 ≤C‖v‖1 .

(a) Show that this is an equivalence relation.

(b) Suppose the two norms are equivalent and that limn→∞ ‖vn‖1 = 0 (that is, that vn
‖·‖1−−−→
n→∞

0).

Show that limn→∞ ‖vn‖2 = 0 (that is, that vn
‖·‖2−−−→
n→∞

0).
(**c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they

determine the same notion of convergence.

P2. Constructions
(a) Let {(Vi,‖·‖i)}

n
i=1 be normed spaces, and let 1≤ p≤ ∞. For v = (vi) ∈

⊕n
i=1Vi define

‖v‖=

(
n

∑
i=1
‖vi‖

p
i

)1/p

.

Show that this defines a norm on
⊕n

i=1Vi.
DEF This operation is called the Lp-sum of the normed spaces.
DEF Let (V,‖·‖) be a normed space, and let W ⊂ V be a subspace. For v+W ∈ V/W set
‖v+W‖V/W = inf{‖v+w‖ : w ∈W}. Show

(b) Show that ‖·‖V/W is 1-homogenous and satisfies the triangle inequality (it’s not always a
norm because it can be zero for non-zero vectors).

Norms
1. Let f (x) = x2 on [−1,1].

(a) For 1≤ p < ∞. Calculate ‖ f‖Lp =
(∫ 1
−1 | f (x)|

p dx
)1/p

.
(b) Calculate ‖ f‖L∞ = sup{| f (x)| :−1≤ x≤ 1}. Check that limp→∞ ‖ f‖Lp = ‖ f‖

∞
.

(c) Calculate ‖ f‖H2 =
(
‖ f‖2

L2 +‖ f ′‖2
L2 +‖ f ′′‖2

L2

)1/2
.

SUPP Show that the H2 norm is equivalent to the norm
(
‖ f‖2

L2 +‖ f ′′‖2
L2

)1/2
.

2. Let A ∈Mn(R).
(a) Show ‖A‖1 = max j ∑

n
i=1

∣∣ai j
∣∣ (hint: we basically did this in class).

(b) Show that ‖A‖
∞
= maxi ∑

n
j=1

∣∣ai j
∣∣.

RMK See below on duality.

3. The spectral radius of A∈Mn(C) is the magnitude of its largest eigenvalue: ρ(A)=max{|λ |λ ∈ Spec(A)}.
(a) Show that for any norm ‖·‖ on Fn and any A ∈Mn(F), ρ(A)≤ ‖A‖.
(b) Suppose that A is diagonable. Show that there is a norm on Fn such that ‖A‖= ρ(A).
(*c) Show that if A is Hermitian then ‖A‖2 = ρ(A).
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(d) Show that if A,B are similar, and ‖·‖ is any norm in Cn, then limm→∞ ‖Am‖1/m = limm→∞ ‖Bm‖1/m

(in the sense that, if one limit exists, then so does the other, and they are equal).
(**e) Show that for any norm on Cn and any A ∈Mn(C), we have limm→∞ ‖Am‖1/m = ρ(A).

4. The Hilbert–Schmidt norm on Mn(C) is ‖A‖HS =
(

∑
n
i, j=1

∣∣ai j
∣∣2)1/2

.

– Show that ‖A‖HS =
(
Tr(A†A)

)1/2.
(a) Show that this is, indeed, a norm.
(b) Show that ‖A‖2 ≤ ‖A‖HS.

Supplementary problems

A. A seminorm on a vector space V is a map V → R≥0 that satisfies all the conditions of a norm
except that it can be zero for non-zero vectors.
(a) Show that for any f ∈V ′, ϕ(v) = | f (v)| is a seminorm.
(b) Construct a seminorm on R2 not of this form.
(c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that ϕ̄(v) =

sup{ϕ(v) | ϕ ∈Φ} is again a seminorm.

B. For v ∈ Cn and 1≤ p≤ ∞ let ‖v‖p be as defined in class.
(a) For 1 < p < ∞ define 1 < q < ∞ by 1

p +
1
q = 1 (also if p = 1 set q = ∞ and if p = ∞ set

q = 1). Given x ∈ C let y(x) = x̄
|x| |x|

p/q (set y = 0 if x = 0), and given a vector x ∈ Cn

define a vector yanalogously.
(i) Show that

∥∥y
∥∥

q = ‖x‖
p/q
p .

(ii) Show that |∑n
i=1 xiyi|= ‖x‖p

∥∥y
∥∥

q
(b) Now let u,v ∈ Cn and let 1 ≤ p ≤ ∞. Show that |∑n

i=1 uivi| ≤ ‖u‖p ‖v‖q (this is called
Hölder’s inequality).

(c) Conlude that ‖u‖p = max
{
|∑n

i=1 uivi| | ‖v‖q = 1
}

.
(d) Show that ‖u‖p is a norm (hint: A(c)).
(e) Show that limp→∞ ‖v‖p = ‖v‖∞

(this is why the supremum norm is usually called the L∞

norm).

C. Let {vn}
∞

n=1 be a Cauchy sequence in a normed space. Show that {‖vn‖}
∞

n=1⊂R≥0 is a Cauchy
sequence.

D. Let X be a set. For 1 ≤ p < ∞ set `p(X) = { f : X → C | ∑x∈X | f (x)|p < ∞}, and also set
`∞(X) = { f : X → C | f bounded}.
(a) Show that for f ∈ `p(X) and g∈ `q(X) we have f g∈ `1(X) and |∑x∈X f (x)g(x)| ≤ ‖ f‖p ‖g‖q.

(b) Show that `p(X) are subspaces of CX , and that ‖ f‖p = (∑x∈X | f (x)|p)
1/p is a norm on

`p(X)
(c) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that { fn(x)}∞

n=1 ⊂ C is a Cauchy
sequence.
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(d) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence and let f (x) = limn→∞ fn(x). Show that f ∈
`p(X).

(e) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that it is convergent in `p(X).

E. Let V,W be normed vector spaces, equipped with the metric topology coming from the norm.
Let T ∈ HomF(V,W ). Show that the following are equivalent:
(1) T is continuous.
(2) T is continuous at zero.
(3) T is bounded: ‖T‖V→W < ∞, that is: for some C > 0 and all v ∈V , ‖T v‖W ≤C‖v‖V .
Hint: the same idea is used in problem P1

F. Let V,W be normed spaces, and let Homcts(V,W ) be the set of bounded linear maps from V to
W .
(a) Show that the operator norm is a norm on Homcts(V,W ).
(b) Suppose that W is complete with respects to its norm. Show that Homcts (V,W ) is also

complete.
DEF The norm on V ∗ def

= Homcts(V,F) is called the dual norm.
(c) Let V = Rn and identify V ∗ with Rn via the basis of δ -functions. Show that the norm on

V ∗ dual to the `1-norm is the `∞ norm and vice versa. Show that the `2-norm is self-dual.

G. (The completion) Let (X ,d) be a metric space.
(a) Let {xn} ,{yn} ⊂ X be two Cauchy sequences. Show that {d(xn,yn)}∞

n=1 ⊂ R is a Cauchy
sequence.

DEF Let
(
X̃ , d̃

)
denote the set of Cauchy sequences in X with the distance d̃

(
x,y
)
= limn→∞ d (xn,yn).

(b) Show that d̃ satisfies all the axioms of a metric except that it can be non-zero for distinct
sequences.

(c) Show that the relation x∼ y ⇐⇒ d̃
(
x,y
)
= 0 is an equivalence relation.

(d) Let X̂ = X̃/ ∼ be the set of equivalence classes. Show that d̃ : X̃ × X̃ → R≥0 descends to
a well-defined function d̂ : X̂× X̂ → R≥0 which is a metric.

(e) Show that
(
X̂ , d̂

)
is a complete metric space.

DEF For x ∈ X let ι(x) ∈ X̂ be the equivalence class of the constant sequence x.
(f) Show that ι : X → X̂ is an isometric embedding with dense image.
(g) (Universal property) Show that for any complete metric space (Y,dY ) and any uniformly

continuous f : X → Y there is a unique extension f̂ : X̂ → Y such that f̂ ◦ ι = f .
(h) Show that triples

(
X̂ , d̂, ι

)
satisfying the property of (g) are unique up to a unique isomor-

phism.

Hint for D(d): Suppose that ‖ f‖p = ∞. Then there is a finite set S ⊂ X with (∑x∈S | f (x)|p)
1/p ≥

limn→∞ ‖ fn‖+1.
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3.4. Example: eigenvalues and the power method (Lecture, 17/

Let A be diagonable. Want eigenvalues of A. Raising A to large powers selects the eigenvalue
with largest component.

• Algorithm: multiply by A and renormalize.
• Advantage: if A sparse only need to multiply by A.
• Rate of convergence related to spectral gap.

3.5. Sequences and series of vectors and matrices

3.5.1. Completeness (Lecture 19/3/2014).

DEFINITION 151. A metric space is complete if

EXAMPLE 152. R. Rn in any norm. Hom(Rn,Rm) (because isom to Rmn).

FACT 153. Any metric space has a completion. [note associated universal property and hence
uniqueness]

THEOREM 154. Let (U,‖·‖U) ,(V,‖·‖V ) be normed spaces with V complete. Then Homb(U,V )
is complete with respect to the operator norm.

PROOF. Let {Tn}∞

n=1 be a Cauchy sequences of linear maps. For fixed u ∈ U , the sequence
{Tnu} is Cauchy: ‖(Tnu−Tmu)‖V ≤ ‖Tn−Tm‖‖u‖. It is therefore convergent – call the limit
T u. This is linear since αTnu + Tnu′ converges to αT u + T u′ while Tn (αu+u′) converges to
T (αu+u′).

Since |‖Tn‖−‖Tm‖| ≤ ‖Tn−Tm‖, the norms themselves are a Cauchy sequences of real num-
bers, in particular a convergent sequence. Now for fixed u, we have ‖T u‖V = limn→∞ ‖Tnu‖V . We
have the pointwise bound ‖Tnu‖ ≤ ‖Tn‖‖u‖U . Passing to the limit we find

‖T u‖V ≤
(

lim
n→∞
‖Tn‖

)
‖u‖U

so T is bounded. Finally, given ε let N be such that if m,n≥ N then ‖Tn−Tm‖ ≤ ε . Then for any
u ∈U ,

‖Tnu−Tmu‖ ≤ ‖Tn−Tm‖‖u‖U ≤ ε ‖u‖U .

Letting m→ ∞ and using the continuity of the norm, we get that if n≥ N then

‖Tnu−T u‖ ≤ ε ‖u‖U .

Since u was arbitrary this shows that ‖Tn−T‖ ≤ ε for n≥ N and we are done. �

EXAMPLE 155. Let K be a compact space. Then C(K), the space of continuous functions on
K, is complete wrt ‖·‖

∞
.

PROOF. Continuous functions on a compact space are bounded. Let { fn}∞

n=1 ⊂ C(K) be a
Cauchy sequence. Then for fixed x∈X , { fn(x)}∞

n=1⊂C is a Cauchy sequence, hence convergent to
some f (x)∈C. To see the convergence is in the norm, give ε > 0 let N be such that ‖ fn− fm‖∞

≤ ε

for n,m≥ N. Then for any x,
| fn(x)− fm(x)| ≤ ε .

Letting m→ ∞ we find for all n≤ N that | fn(x)− f (x)| ≤ ε , that is

‖ fn− f‖
∞
≤ ε.
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Finally, we need to show that f is continuous. Given x ∈ X and ε > 0 let N be as above and let
n≥ N. For any x, the continuity of fn gives a neighbourhood of x where | fn(x)− fn(y)| ≤ ε . Then

| f (x)− f (y)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(y)|+ | fn(y)− f (y)| ≤ 3ε

in that neighbourhood, so f is continuous at x. �

3.5.2. Series of vectors and matrices (Lecture 21/3/2014). Fix a complete normed space V .

DEFINITION 156. Say the series ∑
∞
n=1 vn converges absolutely if ∑

∞
n=1 ‖vn‖V < ∞.

PROPOSITION 157. If ∑
∞
n=1 vn converges absolutely it converges, and ‖∑∞

n=1 vn‖V ≤∑
∞
n=1 ‖vn‖V .

PROOF. Standard. �

THEOREM 158 (M-test). Let X be a (topological) space, fn : X →V continuous. Suppose that
we have Mn such that ‖ fn(x)‖V ≤Mn holds for all x ∈ X. Suppose that M = ∑

∞
n=1 Mn < ∞. Then

∑n fn converges uniformly to a continuous function F : X →V .

REMARK 159. This can be interpreted as Cb(X ,V ) (continuous functions X→V with ‖ f (x)‖V
bounded) being complete with respect to the norm ‖ f‖

∞
= sup{‖ f (x)‖V : x ∈ X}.

We will apply this to power series of matrices.

EXAMPLE 160. Let ‖·‖ be some operator norm on Mn(R), and let A∈Mn(R). For 0< T < 1
‖A‖

(any T > 0 if A = 0) and z ∈ C with |z| ≤ T consider the series
∞

∑
n=0

znAn .

We have ‖An‖ ≤ ‖A‖n (operator norm!) so that ‖znAn‖ ≤ (T ‖A‖)n. Since ∑
∞
n=0 (T ‖A‖)

n con-
verges, we see that our series converges and the sum is continuous in z (and in A). Taking the
union we get convergence in |z| < 1

‖A‖ . The limit is (Id−zA)−1 (incidentally showing this is in-
vertible).

REMARK 161. In fact, the radius of convergence is 1
ρ(A) .

3.5.3. Vector-valued limits and derivatives (24/3/2014). We recall facts about vector-valued
limits.

LEMMA 162 (Limit arithmetic). Let U,V,W be normed spaces. Let ui(x) : X→U, αi(x) : X→
F, T (x) : X → Homb(U,V ), S(x) : X → Homb(V,W ). Then, in each case supposing the limits on
the right exist, the limits on the left exist and equality holds:

(1) limx→x0 (α1(x)u1(x)+α2(x)u2(x))= (limx→x0 α1(x))(limx→x0 u1(x))+(limx→x0 α2(x))(limx→x0 u2(x)).
(2) limx→x0 T (x)u(x) = (limx→x0 T (x))(limx→x0 u(x)).
(3) limx→x0 S(x)T (x) = (limx→x0 S(x))(limx→x0 T (x)).

PROOF. Same as in R, replacing |·| with ‖·‖V . �

We can also differentiate vector-valued functions (see Math 320 for details)
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DEFINITION 163. Let X ⊂ Rn be open. Say that f : X → V is strongly differentiable at x0 if
there is a bounded linear map L : Rn→V such that

lim
h→0

‖ f (x0 +h)− f (x0)−Lh‖V
‖h‖Rn

= 0 .

In that case we write D f (x0) for L.

It is clear that differentiability at x0 implies continuity at x0.

LEMMA 164 (Derivatives). Let U,V,W be normed spaces. Let ui(x) : X → U, T (x) : X →
Homb(U,V ), S(x) : X → Homb(V,W ) be differentiable at x0. Then the derivatives on the left exist
and take the following values:

(1) D(u1 +u2)(x0) = Du1(x0)+Du2(x0).
(2) D(T u)(x0)(h) = (DT (x0)(h) ·u(x0))+T (x0) ·Du(x0)(h).
(3) D(ST )(x0)(h) = (DS(x0)(h) ·T (x0))+(S(x0) ·DT (x0)(h)).

PROOF. Same as in R, replacing |·| with ‖·‖V . �
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Math 412: Problem set 9, due 26/3/2014

1. Let A =

(
0 1
1 1

)
. Let v0 =

(
0
1

)
.

(a) Find S invertible and D diagonal such that A = S−1DS.
– Prove for yourself the formula Ak = S−1DkS.
(b) Find a formula for vk = Akv0, and show that vk

‖vk‖
converges for any norm on R2.

RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real
number 1

2

(
1+
√

5
2

)n
is exponentially close to being an integer.

RMK This idea can solve any difference equation. We will also apply this to solving differen-
tial equations.

2. Let A =

(
z 1
0 z

)
with z ∈ C.

(a) Find (and prove) a simple formula for the entries of An.
(b) Use your formula to decide the set of z for which ∑

∞
n=0 An converge, and give a formula

for the sum.
(c) Show that the sum is (Id−A)−1 when the series converges.

3. For each n construct a projection En : R2 → R2 of norm at least n (Rn is equipped with the
Euclidean norm unless specified otherwise).
RMK Prove for yourself that the norm of an orthogonal projection is 1.

Supplementary problems

A. Consider the map Tr : Mn(F)→ F .
(a) Show that this is a continuous map.
(b) Find the norm of this map when Mn(F) is equipped with the L1→ L1 operator norm (see

PS8 Problem 2(a)).
(c) Find the norm of this map when Mn(F) is equipped with the Hilbert–Schmidt norm (see

PS8 Problem 4).
(*d) Find the norm of this map when Mn(F) is equipped with the Lp → Lp operator norm.

Find the matrices A with operator norm 1 and trace maximal in absolute value.

B. Call T ∈ EndF(V ) bounded below if there is K > 0 such that ‖T v‖ ≥ K ‖v‖ for all v ∈V .
(a) Let T be boudned below. Show that T is invertible, and that T−1 is a bounded operator.
(*b) Suppose that V is finite-dimensional. Show that every invertible map is bounded below.
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CHAPTER 4

The Holomorphic Calculus

4.1. The exponential series (24/3/2014)

We prove in the last lecture:

THEOREM 165. fn : X→V cts, ‖ fn(x)‖V ≤Mn. Then if ∑n Mn < ∞, ∑n fn converges uniformly
to a cts function X →V .

We apply this to power series:

COROLLARY 166. Let ∑n anzn be a power series with radius of convergence R. Then ∑n anAn

converges absolutely if ‖A‖< R, uniformly in {‖A‖ ≤ R− ε}
PROOF. Let X =V = Endb(V ), fn(A) = anAn, so that ‖ fn(A)‖ ≤ |an|‖A‖n. For T < R we have

∑n |an|T n < ∞ and hence uniform convergence in {‖A‖ ≤ T}. �

We therefore fix a normed space V , and and plug matrices A ∈ Endb(V ) into power series.

EXAMPLE 167. exp(A) = ∑k
Ak

k! converges everywhere.

LEMMA 168. exp(tA)exp(sA) = exp((t + s)A).

PROOF. The series converge absolutely, so the product converges in any order. We thus have

exp(tA)exp(sA) =

(
∞

∑
k=0

(tA)k

k!

)(
∞

∑
l=0

(sA)l

l!

)
= ∑

k,l

tks`Ak+`

k!`!

=
∞

∑
m=0

∑
k+l=m

tks`Ak+`

k!`!
=

∞

∑
m=0

Am

m! ∑
k+l=m

m!
k!`!

tks`

=
∞

∑
m=0

Am

m!
(t + s)m = exp((t + s)A) .

�

COROLLARY 169. d
dt exp(tA) = Aexp(tA) = exp(tA)A.

PROOF. At t = 0 we have exp(hA)−Id
h = A+∑

∞
k=1

hk

(k+1)!A
k+1 and∥∥∥∥∥ ∞

∑
k=1

hk

(k+1)!
Ak+1

∥∥∥∥∥≤ ∞

∑
k=1

|h|k

(k+1)!
‖A‖k+1 ≤ exp(|h|‖A‖−1−‖A‖|h|

|h|
−−→
h→0

0 .

In general we have
exp((t +h)A)− exp(tA)

h
= exp(tA)

exp(hA)− Id
h

−−→
h→0

exp(tA)A .

That Aexp(tA) = exp(tA)A. �
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4.1.1. Application: differential equations with constant coefficients. Consider the system
of differential equations {

d
dt v(t) = Av(t)
v(0) = v0

where A is a bounded map.

PROPOSITION 170. The system has the unique solution v(t) = exp(At)v0.

PROOF. We saw d
dt exp(At)v0 = A(exp(At)v0). Conversely, suppose v(t) is any solution. Then

d
dt

(
e−Atv(t)

)
=

(
e−At(−A)

)
(v(t))+

(
e−At

)
(Av(t))

= e−At (−A+A)v(t) = 0 .

It remains to prove: �

LEMMA 171. Let f : [0,1] → V be strongly differentiable. If f ′(t) = 0 for all t then f is
constant.

PROOF. Suppose f (t0) 6= f (0). Let ϕ ∈V ′ be a bounded linear functional such that ϕ ( f (t0)− f (0)) 6=
0. Then ϕ ◦ f : [0,1]→ Ris differentiable and its derivative is 0:

lim
h→0

ϕ ( f (t +h))−ϕ ( f (t))
h

= lim
h→0

ϕ

(
f (t +h)− f (t)

h

)
= ϕ

(
lim
h→0

f (t +h)− f (t)
h

)
= ϕ( f ′(t)) .

But (ϕ ◦ f )(t0)− (ϕ ◦ f )(0) = ϕ ( f (t0)− f (0)) 6= 0, a contradiction. �

REMARK 172. If V is finite-dimensional, every linear functional is bounded. If V is infinite-
dimensional the existence of ϕ is a serious fact.

Now consider a linear ODE with constant coefficients:{
dn

dtn u(t) = ∑
n−1
k=0 aku(k)(t)

u(k)(0) = wk 0≤ k ≤ n−1 .

We solve this system via the auxilliary vector

v(t) =
(

u(t),u′(t), · · · ,u(n−1)(t)
)
.

We then have
dv(t)

dt
= Av

where A is the companion matrix

A =


0 1 0 0 0
0 0 1 0 0

0 0 0 . . . 0
0 0 0 0 1
a0 a1 · · · an−2 an−1

 .

(companion to the polynomial xn−∑
n−1
k=0 akxk). It follows that

v(t) = eAtw .

Idea: bring A to Jordan form so easier to take exponential.
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4.1.2. Diagonal matrices. HW: f (diag(a1, . . . ,an)) = diag( f (a1), . . . , f (an)).

4.2. 26/3/2014

DEFINITION 173. Let f (z) = ∑n anzn. Define f (A) = ∑
∞
n=0 anAn.

LEMMA 174. S f (A)S−1 = f (SAS−1).

PROPOSITION 175. ( f ◦g)(A) = f (g(A)) if it all works.

THEOREM 176. det(exp(A)) = exp(Tr(A)).
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Math 412: Problem set 10, due 7/4/2014

Differenetial Equations

1. We will analyze the differential equation u′′ =−u with initial data u(0) = u0, u′(0) = u1.

(a) Let v(t) =
(

u(t)
u′(t)

)
. Show that u is a solution to the equation iff v solves

v′(t) =
(

0 1
−1 0

)
v(t) .

(b) Let W =

(
0 1
−1 0

)
. Find formulas for W n and express exp(Wt) = ∑

∞
k=0

W ktk

k! as a matrix

whose entries are standard power series.
(c) Show that u(t) = u0 cos(t)+u1 sin(t).

(d) Find a matrix S such that W = S
(

i 0
0 −i

)
S−1. Evaluate exp(Wt) again, this time using

exp(Wt) = S
(

exp
(

it 0
0 −it

))
S−1.

2. Consider the differential equation d
dt v = Bv where B is at in PS7 problem 1.

(a) Find matrices S,D so that D is in Jordan form, and such that B = SDS−1.
(b) Find exp(tD) directly (as in 1(b)).
(c) Find the solution such that v(0) =

(
0 1 1 0

)t.

Power series

3. Products of absolutely convergent series.
(a) Let V be a normed space, and let T,S ∈ Endb(V ) commute. Show that exp(T +S) =

exp(T )exp(S).

(b) Show that, for appropriate values of t, exp(A)exp(B) 6= exp(A+B) where A =

(
0 t
0 0

)
,

B =

(
0 0
−t 0

)
.
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Companion matrices

PRAC Find the Jordan canonical form of

 1
1

0 0 2

.

4. Let C =


0 1 0 0 0
0 0 1 0 0

0 0 0 . . . 0
0 0 0 0 1
a0 a1 · · · an−2 an−1

 be the companion matrix associated with the polyno-

mial p(x) = xn−∑
n−1
k=0 akxk.

(a) Show that p(x) is, indeed, the characteristic polynomial of C.
– For parts (b),(c) fix a non-zero root λ of p(x).
(b) Find (with proof) an eigenvector with eigenvalue λ .
(**c) Let g be a polynomial, and let v be the vector with entries vk = λ kg(k) for 0≤ k≤ n−1.

Show that, if the degree of g is small enough (depending on p,λ ), then ((C−λ )v)k =

λ (g(k+1)−g(k))λ k and (the hard part) that

((C−λ )v)n−1 = λ (g(n)−g(n−1))λ
n−1 .

(**d) Find the Jordan canonical form of C.

Holomorphic calculus

Let f (z) = ∑
∞
m=0 amzm be a power series with radius of convergence R. For a matrix A define

f (A) = ∑
∞
m=0 amAm if the series converges absolutely in some matrix norm.

5. Let D = diag(λ1, · · · ,λn) be diagonal with ρ(D) < R (that is, |λi| < R for each i). Show that
f (D) = diag( f (λ1), · · · , f (λn)).

6. Let A ∈Mn(C) be a matrix with ρ(A)< R.
(a) [review of power series] Choose R′ such that ρ(A) < R′ < R. Show that |am| ≤C(R′)−m

for some C > 0.
(b) Using PS8 problem 3(a) show that f (A) converges absolutely with respect to any matrix

norm.
(*c) Suppose that A = S (D+N)S−1 where D+N is the Jordan form (D is diagonal, N upper-

triangular nilpotent). Show that

f (A) = S

(
n

∑
k=0

f (k)(D)

k!
Nk

)
S−1 .

Hint: D,N commute.
RMK1 This gives an alternative proof that f (A) converges absolutely if ρ(A) < R, using the

fact that f (k)(D) can be analyzed using single-variable methods.

RMK2 Compare your answer with the Taylor expansion f (x+ y) = ∑
∞
k=0

f (k)(x)
k! yk.

(d) Apply this formula to find exp(tB) where B is as in problem 2.
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7. Let A ∈Mn(C). Prove that det(exp(A)) = exp(TrA).
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4.3. Invertibility and the resolvent (31/3/2014)

Say we have a matrix A we’d like to invert. Idea: write A = D+E where we know to invert D.
Then A = D(I +D−1E), so if

∥∥D−1E
∥∥< 1 we have(

I +D−1E
)−1

=
∞

∑
n=0

(
−D−1E

)n

and

A−1 =
∞

∑
n=0

(
−D−1E

)n
D−1

(in particular, A is invertible).

4.3.1. Application: Gauss-Seidel and Jacobi iteration.

4.3.2. Application: the resolvent. Let V be a complete normed space. Let T be an operator
on V . Define the resolvent set of T to be the set of z ∈ Cfor which T − z Id has a bounded inverse.
Define the spectrum σ(T ) to be the complement of the resolvent set. This contains the actual
eigenvalues (λ such that Ker(T −λ ) is non-trivial) but also λ where T −λ is not surjective, and
λ where an inverse to T −λ exists but is unbounded).

THEOREM 177. The resolvent set is open, and the function (“resolvent function”) ρ(T )→
Endb(V ) given by z 7→ R(z) = (z Id−T )−1 is holomorphic.

PROOF. Suppose z0− T has a bounded inverse. We need to invert z− T for z close to z0.
Indeed, if |z− z0|< 1

‖(z0−T )−1‖ then

−
∞

∑
n=0

(T − z0)
n+1 (z− z0)

n

converges and furnishes the requisite inverse. It is evidently holomorphic in z in the indicated
ball. �

EXAMPLE 178. Let Ω ⊂ R2 be a bounded domain with nice boundary, ∆ = d2

dx2 +
d2

dy2 the
Laplace operator (say defined on f ∈C∞(Ω) vanishing on the boundary). Then ∆ is unbounded,
but its resolvent is nice. For example, R(iε) only has eigenvalues. It follows that the spectrum of
∆ consists of eigenvalues, that is for λ ∈ σ(∆) there is f ∈ L2(Ω) with ∆ f = λ f (and f ∈C∞ by
elliptic regularity).
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CHAPTER 5

Vignettes

Sketches of applications of linear algebra to group theory.
Key Idea: linearization – use linear tools to study non-linear objects.

5.1. The exponential map and structure theory for GLn(R) (2/4/2014)

Our goal is to understand the (topologically) closed subgroups of G = GLn(R).
Idea: to a subgroup H assign the logarithms of the elements of H. If H was commutative this

would be a subspace.

DEFINITION 179. Lie(H) = {X ∈Mn(R) | ∀t : exp(tX) ∈ H}.

REMARK 180. Clearly this is invariant under scaling. In fact, enough to take small t, and even
just a sequence of t tending to zero (since {t | exp(tX) ∈ H} is a closed subgroup of R).

THEOREM 181. Lie(H) is a subspace of Mn(R), closed under [X ,Y ].

PROOF. For t ∈Rand m∈Z≥1,
(
exp
( tX

m

)
exp
( tY

m

))m
=
(

Id+ tX+tY
m +O( 1

m2 )
)m
−−−→
m→∞

exp(tX + tY ).

Thus If X ,Y ∈ Lie(H) then also X +Y ∈ Lie(H). �

THEOREM 182. Bijection between closed connected subgroups of G and subalgebras of the
Lie algebra.

Classify subgroups of G containing A by action on Lie algebra and finding eigenspaces.

5.2. Representation Theory of Groups

EXAMPLE 183 (Representations). (1) Structure of GLn(R): let A act on Mn(R).
(2) M manifold, G acting on M, thus acting on Hk(M) and Hk(M).
(3) Angular momentum: O(3) acting by rotation on L2 (R3).
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