MATH 253 - WORKSHEET 32 SPHERICAL COORDINATES

(1) Express the following surfaces in spherical coordinates.
(a) The sphere of radius 2 about the origin.

Solution: $\rho \leq 2$
(b) The "double cone" $z^{2}=x^{2}+y^{2}$.

Solution: This reads $\rho^{2} \cos ^{2} \phi=r^{2}=\rho^{2} \sin ^{2} \phi$, that is $|\tan \phi|=1$, so $\phi=\frac{\pi}{4}, \phi=\frac{3 \pi}{4}$.
(c) The paraboloid $z=x^{2}+y^{2}$.

Solution: $\rho \cos \phi=\rho^{2} \sin ^{2} \phi$ so $\rho=\frac{\cos \phi}{\sin ^{2} \phi}$.
(2) Let B be the ball of radius 1 about the origin. Evaluate $\iiint_{B} e^{-\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \mathrm{~d} V$.

Solution: The domain is $\rho \leq 1$, so the integral factors in spherical coordinates:

$$
\begin{aligned}
\iiint_{B} e^{-\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \mathrm{~d} V & =\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\phi=0}^{\phi=\pi} \sin \phi \mathrm{d} \phi \int_{\rho=0}^{\rho=1} \rho^{2} \mathrm{~d} \rho e^{-\rho^{3}} \\
& =\left(\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta\right)\left(\int_{\phi=0}^{\phi=\pi} \sin \phi \mathrm{d} \phi\right)\left(\int_{\rho=0}^{\rho=1} \rho^{2} \mathrm{~d} \rho e^{-\rho^{3}}\right) \\
& =(2 \pi)[-\cos \phi]_{\phi=0}^{\phi=\pi}\left[-\frac{1}{3} e^{-\rho^{3}}\right]_{\rho=0}^{\rho=1} \\
& =(2 \pi)(2)\left(\frac{1-e^{-1}}{3}\right)=\frac{4 \pi}{3}\left(1-\frac{1}{e}\right) .
\end{aligned}
$$

(3) Describe the following regions in words, then set up integration in spherical coordinates:
(a) $E=\left\{(x, y, z) \mid x, y, z \geq 0, x^{2}+y^{2}+z^{2} \leq 9\right\}$

Solution: This is one eighth of the ball of radius 3. The ball is defined by $\rho \leq 3$. That the points are in the positive quadrant is equivalent to $0 \leq \theta \leq \frac{\pi}{2}$ (think polar coordinates). That the points have $z \geq 0$ is equivalent to $0 \leq \phi \leq \frac{\pi}{2}$. In summary, the integral would read

$$
\int_{\theta=0}^{\theta=\pi / 2} \mathrm{~d} \theta \int_{\phi=0}^{\phi=\pi / 2} \sin \phi \mathrm{~d} \phi \int_{\rho=0}^{\rho=3} \rho^{2} \mathrm{~d} \rho f
$$

(b) $E=\left\{(x, y, z) \mid x^{2}+y^{2}+(z-1)^{2} \leq 1\right\}$

Solution: This is the ball of radius 1 about $(0,0,1)$. The condition is equivalent to $x^{2}+y^{2}+$ $\left(z^{2}-2 z+1\right) \leq 1$, that is $x^{2}+y^{2}+z^{2} \leq 2 z$, which reads $\rho^{2} \leq 2 \rho \cos \phi$, or $\rho \leq 2 \cos \phi$. Since the ball is above the $x y$ plane, we have $0 \leq \phi \leq \frac{\pi}{2}$, so the integral is

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\phi=0}^{\phi=\pi / 2} \sin \phi \mathrm{~d} \phi \int_{\rho=0}^{\rho=2 \cos \phi} \rho^{2} \mathrm{~d} \rho f .
$$

If one wants to integrate $\mathrm{d} \rho$ first, then ρ extends from 0 to 2 (the point most distant from the origin is the north point of the ball, at $(0,0,2))$. Then ϕ must satisfy $0 \leq \phi \leq \frac{\pi}{2}$ and $\cos \phi \geq \frac{\rho}{2}$, so the integral reads

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\rho=0}^{\rho=2} \rho^{2} \mathrm{~d} \rho \int_{\phi=0}^{\phi=\cos ^{-1}(\rho / 2)} \sin \phi \mathrm{d} \phi f
$$

[^0]
Cylindrical or Spherical?

(1) Let E be the "dimple" inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the paraboloid $z=x^{2}+y^{2}$. Set up integration on it in spherical and cylindrical coordinates.

Cylindrical: We need points (x, y, z) below the upper hemisphere, that is belog the graph of $z=\sqrt{2-x^{2}-y^{2}}$, and above the graph of the paraboloid. In cylindrical coordinates we have $x^{2}+y^{2}=r^{2}$ so this reads: $r^{2} \leq z \leq \sqrt{2-r^{2}}$. What about r, θ ? The problem is clearly invariant under rotation around z-axis, so no constraint on θ. For r, at the origin we have $r=0$ and the largest circle in our "dimple" is at the intersection of the paraboloid and the sphere, that is on the circle of radius R where $R^{2}+\left(R^{2}\right)^{2}=2$ (plugging in $z=r^{2}$ into the equation $z^{2}+r^{2}=2$ of the sphere). The last equation can be rearranged to $\left(R^{2}\right)^{2}+R^{2}-2=0$ and factors as $\left(R^{2}+2\right)\left(R^{2}-1\right)=0$ which has the unique positive root $R=1$. It follows that $0 \leq r \leq 1$, so we have

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=1} r \mathrm{~d} r \int_{z=r^{2}}^{z=\sqrt{2-r^{2}}} \mathrm{~d} z f .
$$

Cylindrical, other order: In our dimple the z-range is $0 \leq z \leq 2$ (from origin to north pole of sphere), and given z we have $r \leq \sqrt{z}$ and $r \leq \sqrt{2-z^{2}}$. Note that the two constraints point in the same direction, so we take the minimum. If $z \leq 1$ then $\sqrt{z} \leq \sqrt{2-z^{2}}$ (the plane of height z exits the dimple at the cone). If $z \geq 1$ then $\sqrt{2-z^{2}} \leq \sqrt{z}$ (the plane at height z exits the dimple at the sphere). The integral is then

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{z=0}^{z=1} \mathrm{~d} z \int_{r=0}^{r=\sqrt{z}} r \mathrm{~d} r f+\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{z=1}^{z=2} \mathrm{~d} z \int_{r=0}^{r=\sqrt{2-z^{2}}} r \mathrm{~d} r f .
$$

Spherical: We need to decide if a point (ρ, θ, ϕ) is inside the sphere and above the paraboloid. Nothing depends on θ, and to be inside the sphere simply means $\rho \leq \sqrt{2}$. To be above the paraboloid means $z \geq r^{2}$ so $\rho \cos \phi \geq(\rho \sin \phi)^{2}$ or $\rho \leq \frac{\cos \phi}{\sin ^{2} \phi}$. So we have the same problem as in the second cylindrical case: for small ϕ (near the north pole) the radial line ends on the sphere. For larger ϕ (near the $x y$ plane) the radial line ends on the paraboloid instead. The changeover occurs on the circle of intersection, which is at $z=1, r=1$ so at $\tan \phi=1$ and $\phi=\frac{\pi}{4}$. The integral is then

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\phi=0}^{\phi=\pi / 4} \sin \phi \mathrm{~d} \phi \int_{\rho=0}^{\rho=\sqrt{2}} \rho^{2} \mathrm{~d} \rho f+\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\phi=\pi / 4}^{\phi=\pi / 2} \sin \phi \mathrm{~d} \phi \int_{\rho=0}^{\rho=\frac{\cos \phi}{\sin ^{2} \phi}} \rho^{2} \mathrm{~d} \rho f .
$$

For this we also used that $0 \leq \phi \leq \frac{\pi}{2}$ since we are above the $x y$ plane
Disucssion: Cylindrical was easiest since we didn't need to break the domain in two.
(2) Let E be the region above the cone $3 z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=\frac{1}{2}$. Set up integration on it.

Cylindrical: Symmetry uner rotation means there is no constraint on θ. Being between the cone and the plane reads $\frac{r}{3} \leq z \leq \frac{1}{2}$. The largest radius is at the base of the cone, when $z=\frac{1}{2}$ and hence $r=\frac{3}{2}$, so the integral reads

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=3 / 2} r \mathrm{~d} r \int_{z=r / 3}^{z=1 / 2} \mathrm{~d} z f .
$$

Cylindrical, other order: We can instead interpret the constraint as $r \leq 3 z$, so the integral is also

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{z=0}^{z=1 / 2} \mathrm{~d} z \int_{r=0}^{r=3 z} r \mathrm{~d} r f .
$$

Spherical: Points on the cone have $\tan \phi=\frac{r}{z}=3$, so being above the cone means $0 \leq \phi \leq$ $\tan ^{-1}(3)$. The plane $z=\frac{1}{2}$ is $\rho \cos \phi=\frac{1}{2}$, so the integral is

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{\phi=0}^{\phi=\tan ^{-1}(3)} \sin \phi \mathrm{d} \phi \int_{\rho=0}^{\rho=\frac{1}{2 \cos \phi}} \rho^{2} \mathrm{~d} \rho f .
$$

Disucssion: Now there is no obviuos advantage to either coordiante system; the choice will depend on f.

[^0]: Date: 27/11/2013.

