MATH 253 – WORKSHEET 32 SPHERICAL COORDINATES

- (1) Express the following surfaces in spherical coordinates.
 - (a) The sphere of radius 2 about the origin. Solution: $\rho \leq 2$
 - (b) The "double cone" $z^2 = x^2 + y^2$.

Solution: This reads $\rho^2 \cos^2 \phi = r^2 = \rho^2 \sin^2 \phi$, that is $|\tan \phi| = 1$, so $\phi = \frac{\pi}{4}, \phi = \frac{3\pi}{4}$ c) The paraboloid $z = x^2 + y^2$.

- (c) The paraboloid $z = x^2 + y^2$. Solution: $\rho \cos \phi = \rho^2 \sin^2 \phi$ so $\rho = \frac{\cos \phi}{\sin^2 \phi}$.
- (2) Let *B* be the ball of radius 1 about the origin. Evaluate $\iiint_B e^{-(x^2+y^2+z^2)^{3/2}} dV$. Solution: The domain is $\rho \leq 1$, so the integral factors in spherical coordinates:

$$\iiint_{B} e^{-(x^{2}+y^{2}+z^{2})^{3/2}} dV = \int_{\theta=0}^{\theta=2\pi} d\theta \int_{\phi=0}^{\phi=\pi} \sin \phi \, d\phi \int_{\rho=0}^{\rho=1} \rho^{2} \, d\rho e^{-\rho^{3}}$$
$$= \left(\int_{\theta=0}^{\theta=2\pi} d\theta\right) \left(\int_{\phi=0}^{\phi=\pi} \sin \phi \, d\phi\right) \left(\int_{\rho=0}^{\rho=1} \rho^{2} \, d\rho e^{-\rho^{3}}\right)$$
$$= (2\pi) \left[-\cos \phi\right]_{\phi=0}^{\phi=\pi} \left[-\frac{1}{3}e^{-\rho^{3}}\right]_{\rho=0}^{\rho=1}$$
$$= (2\pi) (2) \left(\frac{1-e^{-1}}{3}\right) = \frac{4\pi}{3} \left(1-\frac{1}{e}\right).$$

- (3) Describe the following regions in words, then set up integration in spherical coordinates:
 - (a) $E = \{(x, y, z) \mid x, y, z \ge 0, x^2 + y^2 + z^2 \le 9\}$

Solution: This is one eighth of the ball of radius 3. The ball is defined by $\rho \leq 3$. That the points are in the positive quadrant is equivalent to $0 \leq \theta \leq \frac{\pi}{2}$ (think polar coordinates). That the points have $z \geq 0$ is equivalent to $0 \leq \phi \leq \frac{\pi}{2}$. In summary, the integral would read

$$\int_{\theta=0}^{\theta=\pi/2} \mathrm{d}\theta \int_{\phi=0}^{\phi=\pi/2} \sin\phi \,\mathrm{d}\phi \int_{\rho=0}^{\rho=3} \rho^2 \,\mathrm{d}\rho f$$

(b) $E = \{(x, y, z) \mid x^2 + y^2 + (z - 1)^2 \le 1\}$

Solution: This is the ball of radius 1 about (0,0,1). The condition is equivalent to $x^2 + y^2 + (z^2 - 2z + 1) \le 1$, that is $x^2 + y^2 + z^2 \le 2z$, which reads $\rho^2 \le 2\rho \cos \phi$, or $\rho \le 2 \cos \phi$. Since the ball is above the xy plane, we have $0 \le \phi \le \frac{\pi}{2}$, so the integral is

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{\phi=0}^{\phi=\pi/2} \sin\phi \,\mathrm{d}\phi \int_{\rho=0}^{\rho=2\cos\phi} \rho^2 \,\mathrm{d}\rho f$$

If one wants to integrate $d\rho$ first, then ρ extends from 0 to 2 (the point most distant from the origin is the north point of the ball, at (0, 0, 2)). Then ϕ must satisfy $0 \le \phi \le \frac{\pi}{2}$ and $\cos \phi \ge \frac{\rho}{2}$, so the integral reads

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{\rho=0}^{\rho=2} \rho^2 \,\mathrm{d}\rho \int_{\phi=0}^{\phi=\cos^{-1}(\rho/2)} \sin\phi \,\mathrm{d}\phi f \,.$$

Date: 27/11/2013.

CYLINDRICAL OR SPHERICAL?

(1) Let E be the "dimple" inside the sphere $x^2 + y^2 + z^2 = 2$ and above the paraboloid $z = x^2 + y^2$. Set up integration on it in spherical and cylindrical coordinates.

Cylindrical: We need points (x, y, z) below the upper hemisphere, that is belog the graph of $z = \sqrt{2 - x^2 - y^2}$, and above the graph of the paraboloid. In cylindrical coordinates we have $x^2 + y^2 = r^2$ so this reads: $r^2 \le z \le \sqrt{2 - r^2}$. What about r, θ ? The problem is clearly invariant under rotation around z-axis, so no constraint on θ . For r, at the origin we have r = 0 and the largest circle in our "dimple" is at the intersection of the paraboloid and the sphere, that is on the circle of radius R where $R^2 + (R^2)^2 = 2$ (plugging in $z = r^2$ into the equation $z^2 + r^2 = 2$ of the sphere). The last equation can be rearranged to $(R^2)^2 + R^2 - 2 = 0$ and factors as $(R^2 + 2)(R^2 - 1) = 0$ which has the unique positive root R = 1. It follows that $0 \le r \le 1$, so we have

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{r=0}^{r=1} r \, \mathrm{d}r \int_{z=r^2}^{z=\sqrt{2-r^2}} \mathrm{d}z f \, .$$

Cylindrical, other order: In our dimple the z-range is $0 \le z \le 2$ (from origin to north pole of sphere), and given z we have $r \leq \sqrt{z}$ and $r \leq \sqrt{2-z^2}$. Note that the two constraints point in the same direction, so we take the minimum. If $z \leq 1$ then $\sqrt{z} \leq \sqrt{2-z^2}$ (the plane of height z exits the dimple at the cone). If $z \ge 1$ then $\sqrt{2-z^2} \le \sqrt{z}$ (the plane at height z exits the dimple at the sphere). The integral is then

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{z=0}^{z=1} \mathrm{d}z \int_{r=0}^{r=\sqrt{z}} r \,\mathrm{d}rf + \int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{z=1}^{z=2} \mathrm{d}z \int_{r=0}^{r=\sqrt{2-z^2}} r \,\mathrm{d}rf.$$

Spherical: We need to decide if a point (ρ, θ, ϕ) is inside the sphere and above the paraboloid. Nothing depends on θ , and to be inside the sphere simply means $\rho \leq \sqrt{2}$. To be above the paraboloid means $z \ge r^2$ so $\rho \cos \phi \ge (\rho \sin \phi)^2$ or $\rho \le \frac{\cos \phi}{\sin^2 \phi}$. So we have the same problem as in the second cylindrical case: for small ϕ (near the north pole) the radial line ends on the sphere. For larger ϕ (near the xy plane) the radial line ends on the paraboloid instead. The changeover occurs on the circle of intersection, which is at z = 1, r = 1 so at $\tan \phi = 1$ and $\phi = \frac{\pi}{4}$. The integral is then

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{\phi=0}^{\phi=\pi/4} \sin\phi \,\mathrm{d}\phi \int_{\rho=0}^{\rho=\sqrt{2}} \rho^2 \,\mathrm{d}\rho f + \int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{\phi=\pi/4}^{\phi=\pi/2} \sin\phi \,\mathrm{d}\phi \int_{\rho=0}^{\rho=\frac{\cos\phi}{\sin^2\phi}} \rho^2 \,\mathrm{d}\rho f \,.$$

For this we also used that $0 \le \phi \le \frac{\pi}{2}$ since we are above the xy plane

Disucssion: Cylindrical was easiest since we didn't need to break the domain in two. (2) Let E be the region above the cone $3z = \sqrt{x^2 + y^2}$ and below the plane $z = \frac{1}{2}$. Set up integration on it.

Cylindrical: Symmetry uner rotation means there is no constraint on θ . Being between the cone and the plane reads $\frac{r}{3} \le z \le \frac{1}{2}$. The largest radius is at the base of the cone, when $z = \frac{1}{2}$ and hence $r = \frac{3}{2}$, so the integral reads

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{r=0}^{r=3/2} r \,\mathrm{d}r \int_{z=r/3}^{z=1/2} \mathrm{d}z f \,.$$

Cylindrical, other order: We can instead interpret the constraint as $r \leq 3z$, so the integral is also

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{z=0}^{z=1/2} \mathrm{d}z \int_{r=0}^{r=3z} r \,\mathrm{d}rf.$$

Spherical: Points on the cone have $\tan \phi = \frac{r}{z} = 3$, so being above the cone means $0 \le \phi \le 1$ $\tan^{-1}(3)$. The plane $z = \frac{1}{2}$ is $\rho \cos \phi = \frac{1}{2}$, so the integral is

$$\int_{\theta=0}^{\theta=2\pi} \mathrm{d}\theta \int_{\phi=0}^{\phi=\tan^{-1}(3)} \sin\phi \,\mathrm{d}\phi \int_{\rho=0}^{\rho=\frac{1}{2\cos\phi}} \rho^2 \,\mathrm{d}\rho f$$

Disucssion: Now there is no obviuos advantage to either coordiante system; the choice will depend on f.