
MATH 253 � WORKSHEET 32

SPHERICAL COORDINATES

(1) Express the following surfaces in spherical coordinates.
(a) The sphere of radius 2 about the origin.

Solution: ρ ≤ 2
(b) The �double cone� z2 = x2 + y2.

Solution: This reads ρ2 cos2 φ = r2 = ρ2 sin2 φ, that is |tanφ| = 1, so φ =
π

4
, φ =

3π
4

.

(c) The paraboloid z = x2 + y2.

Solution: ρ cosφ = ρ2 sin2 φ so ρ = cosφ
sin2 φ

.

(2) Let B be the ball of radius 1 about the origin. Evaluate
�

B
e−(x2+y2+z2)3/2

dV .
Solution: The domain is ρ ≤ 1, so the integral factors in spherical coordinates:
�

B

e−(x2+y2+z2)3/2

dV =
� θ=2π

θ=0

dθ
� φ=π

φ=0

sinφ dφ
� ρ=1

ρ=0

ρ2 dρe−ρ
3

=

(� θ=2π

θ=0

dθ

)(� φ=π

φ=0

sinφdφ

)(� ρ=1

ρ=0

ρ2 dρe−ρ
3
)

= (2π) [− cosφ]φ=π
φ=0

[
−1

3
e−ρ

3
]ρ=1

ρ=0

= (2π) (2)
(

1− e−1

3

)
=

4π
3

(
1− 1

e

)
.

(3) Describe the following regions in words, then set up integration in spherical coordinates:
(a) E =

{
(x, y, z) | x, y, z ≥ 0, x2 + y2 + z2 ≤ 9

}
Solution: This is one eighth of the ball of radius 3. The ball is de�ned by ρ ≤ 3. That the
points are in the positive quadrant is equivalent to 0 ≤ θ ≤ π

2 (think polar coordinates). That
the points have z ≥ 0 is equivalent to 0 ≤ φ ≤ π

2 . In summary, the integral would read

� θ=π/2

θ=0

dθ
� φ=π/2

φ=0

sinφdφ
� ρ=3

ρ=0

ρ2 dρf

(b) E =
{
(x, y, z) | x2 + y2 + (z − 1)2 ≤ 1

}
Solution: This is the ball of radius 1 about (0, 0, 1). The condition is equivalent to x2 + y2 +
(z2− 2z+ 1) ≤ 1, that is x2 + y2 + z2 ≤ 2z, which reads ρ2 ≤ 2ρ cosφ, or ρ ≤ 2 cosφ. Since the
ball is above the xy plane, we have 0 ≤ φ ≤ π

2 , so the integral is

� θ=2π

θ=0

dθ
� φ=π/2

φ=0

sinφ dφ
� ρ=2 cosφ

ρ=0

ρ2 dρf .

If one wants to integrate dρ �rst, then ρextends from 0 to 2 (the point most distant from the
origin is the north point of the ball, at (0, 0, 2)). Then φ must satisfy 0 ≤ φ ≤ π

2 and cosφ ≥ ρ
2 ,

so the integral reads

� θ=2π

θ=0

dθ
� ρ=2

ρ=0

ρ2 dρ
� φ=cos−1(ρ/2)

φ=0

sinφ dφf .
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Cylindrical or Spherical?

(1) Let E be the �dimple� inside the sphere x2 + y2 + z2 = 2 and above the paraboloid z = x2 + y2. Set
up integration on it in spherical and cylindrical coordinates.
Cylindrical: We need points (x, y, z) below the upper hemisphere, that is belog the graph of

z =
√

2− x2 − y2, and above the graph of the paraboloid. In cylindrical coordinates we have

x2 + y2 = r2 so this reads: r2 ≤ z ≤
√

2− r2. What about r, θ? The problem is clearly invariant
under rotation around z-axis, so no constraint on θ. For r, at the origin we have r = 0 and the largest
circle in our �dimple� is at the intersection of the paraboloid and the sphere, that is on the circle of
radius R where R2 +(R2)2 = 2 (plugging in z = r2 into the equation z2 + r2 = 2 of the sphere). The

last equation can be rearranged to
(
R2
)2 + R2 − 2 = 0 and factors as

(
R2 + 2

) (
R2 − 1

)
= 0 which

has the unique positive root R = 1. It follows that 0 ≤ r ≤ 1, so we have

� θ=2π

θ=0

dθ
� r=1

r=0

r dr
� z=

√
2−r2

z=r2
dzf .

Cylindrical, other order: In our dimple the z-range is 0 ≤ z ≤ 2 (from origin to north pole of

sphere), and given z we have r ≤
√
z and r ≤

√
2− z2. Note that the two constraints point in the

same direction, so we take the minimum. If z ≤ 1 then
√
z ≤
√

2− z2 (the plane of height z exits

the dimple at the cone). If z ≥ 1 then
√

2− z2 ≤
√
z (the plane at height z exits the dimple at the

sphere). The integral is then

� θ=2π

θ=0

dθ
� z=1

z=0

dz
� r=

√
z

r=0

r drf +
� θ=2π

θ=0

dθ
� z=2

z=1

dz
� r=

√
2−z2

r=0

r drf .

Spherical: We need to decide if a point (ρ, θ, φ) is inside the sphere and above the paraboloid.

Nothing depends on θ, and to be inside the sphere simply means ρ ≤
√

2. To be above the paraboloid

means z ≥ r2 so ρ cosφ ≥ (ρ sinφ)2 or ρ ≤ cosφ
sin2 φ

. So we have the same problem as in the second

cylindrical case: for small φ (near the north pole) the radial line ends on the sphere. For larger φ
(near the xy plane) the radial line ends on the paraboloid instead. The changeover occurs on the
circle of intersection, which is at z = 1, r = 1 so at tanφ = 1 and φ = π

4 . The integral is then

� θ=2π

θ=0

dθ
� φ=π/4

φ=0

sinφ dφ
� ρ=

√
2

ρ=0

ρ2 dρf +
� θ=2π

θ=0

dθ
� φ=π/2

φ=π/4

sinφ dφ
� ρ= cosφ

sin2 φ

ρ=0

ρ2 dρf .

For this we also used that 0 ≤ φ ≤ π
2 since we are above the xy plane

Disucssion: Cylindrical was easiest since we didn't need to break the domain in two.

(2) Let E be the region above the cone 3z =
√
x2 + y2 and below the plane z = 1

2 . Set up integration
on it.
Cylindrical: Symmetry uner rotation means there is no constraint on θ. Being between the cone

and the plane reads r
3 ≤ z ≤

1
2 . The largest radius is at the base of the cone, when z = 1

2 and hence

r = 3
2 , so the integral reads

� θ=2π

θ=0

dθ
� r=3/2

r=0

r dr
� z=1/2

z=r/3

dzf .

Cylindrical, other order: We can instead interpret the constraint as r ≤ 3z, so the integral is
also � θ=2π

θ=0

dθ
� z=1/2

z=0

dz
� r=3z

r=0

r drf .

Spherical: Points on the cone have tanφ = r
z = 3, so being above the cone means 0 ≤ φ ≤

tan−1(3). The plane z = 1
2 is ρ cosφ = 1

2 , so the integral is

� θ=2π

θ=0

dθ
� φ=tan−1(3)

φ=0

sinφ dφ
� ρ= 1

2 cosφ

ρ=0

ρ2 dρf .

2



Disucssion: Now there is no obviuos advantage to either coordiante system; the choice will
depend on f .
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