MATH 253 - WORKSHEET 31 CYLINDRICAL COORDINATES

(1) Express the following surfaces in cylindrical coordinates.
(a) The cylinder of radius 2 about the z-axis.

Solution: $r=2$.
(b) The paraboloid $z=x^{2}+y^{2}$.

Solution: $z=r^{2}$.
(2) A drill bit of diameter a is used to drill a hole through a ball of radius a. What is the volume of the remaining object?

Solution: We work in cylindrical coordinates, with the z-axis being in the middle of the drilled cylinder - (1) the problem has an axis of symmetry, and (2) we want to "walk" up and down the axis. We first find the equations of the bounding surfaces: the sphere around the ball has the equation $x^{2}+y^{2}+z^{2}=a^{2}$, so in our coordinates $r^{2}+z^{2}=a^{2}$. The cylinder in the middle has the equation $r=\frac{a}{2}$ (note we are given the diameter!).

- Slicing method 1: Projecting from the top to the $x y$ plane we get the an annula "shadow", specifically $\frac{a}{2} \leq r \leq a$. Above each point (r, θ) in the $x y$ plane we see a " z-line" extending from the bottom hemisphere to the top hemisphere, that is from $z=-\sqrt{a^{2}-r^{2}}$ to $z=+\sqrt{a^{2}-r^{2}}$. The volume is then

$$
\begin{aligned}
V & =\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=a / 2}^{r=a} r \mathrm{~d} r \int_{z=-\sqrt{a^{2}-r^{2}}}^{z=+\sqrt{a^{2}-r^{2}}} \mathrm{~d} z \cdot 1 \\
& =\quad(2 \pi) \int_{r=a / 2}^{r=a} r \mathrm{~d} r 2 \sqrt{a^{2}-r^{2}} \\
u=a^{2}=r^{2} & (2 \pi) \int_{u=\frac{3}{4} a^{2}}^{u=0}(-\mathrm{d} u) \sqrt{u} \\
& =(2 \pi) \int_{u=0}^{u=\frac{3}{4} a^{2}} \sqrt{u} \mathrm{~d} u \\
& =\quad(2 \pi)\left(\frac{2}{3}\left(\frac{3}{4} a^{2}\right)^{3 / 2}\right)=\frac{\sqrt{3} \pi}{2} a^{3} .
\end{aligned}
$$

- Slicing method 2: Slice in planes parallel to the $x y$ plane (that is, planes of fixed z). For each z, θ, an " r-line" is a ray extending perpendicular to the z-axis. It will begin at the cylinder and end at the sphere, so the range for the r-integral will be $\frac{a}{2} \leq r \leq \sqrt{z^{2}-r^{2}}$. The z-range begins and ends at the meeting points of the cylinder and the sphere, that is where $r=\frac{a}{2}$ and
$r^{2}+z^{2}=a^{2}$ that is where $z= \pm \frac{\sqrt{3}}{2} a$. The volume is thus also

$$
\begin{aligned}
V & =\int_{z=-\frac{\sqrt{3}}{2} a}^{z=+\frac{\sqrt{3}}{3} a} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=\frac{a}{2}}^{r=\sqrt{a^{2}-z^{2}}} r \mathrm{~d} r \\
& =(2 \pi) \int_{z=-\frac{\sqrt{3}}{2} a}^{z=+\frac{\sqrt{3}}{2} a} \mathrm{~d} z\left[\frac{r^{2}}{2}\right]_{r=\frac{a}{2}}^{r=\sqrt{a^{2}-z^{2}}} \\
& =\pi \int_{z=-\frac{\sqrt{3}}{2} a}^{z=+\frac{\sqrt{3}}{2} a} \mathrm{~d} z\left[a^{2}-z^{2}-\frac{a^{2}}{4}\right] \\
& =\pi\left[\frac{3}{4} a^{2} z-\frac{z^{3}}{3}\right]_{z=-\frac{\sqrt{3}}{2} a}^{z=+\frac{\sqrt{3}}{2} a} \\
& =2 \pi a^{3}\left[\frac{3}{4} \cdot \frac{\sqrt{3}}{2}-\frac{1}{3} \frac{\sqrt{3}}{8}\right]=\frac{2 \sqrt{3} \pi a^{3}}{8}\left[3-\frac{\sqrt{3}^{2}}{3}\right]=\frac{\sqrt{3} \pi}{2} a^{3}
\end{aligned}
$$

(3) Where is the center of mass of a right circular cone? Suppose the base has radius R and the cone has height H.

Solution: We set our coordinate system so that the z-axis is the axis of symmetry of the cone, and such that $z=0$ at the apex. This way, if the point (r, θ, z) is on the side of the cone then the point (R, θ, H) is also on the side, and the right triangles with sides $z, r, \sqrt{z^{2}+r^{2}}$ and $H, R, \sqrt{H^{2}+R^{2}}$ are similar. The equation of the side of the cone is then $\frac{z}{H}=\frac{r}{R}$ (note that if we put $z=0$ at the base, the equation would read $\frac{H-z}{H}=\frac{r}{R}$ which is fine, but complicates the algebra later). The equation of the base is simply $z=H$. We now set up integrals using either slicing method:

- The shadow on the $x y$ plane is the disc $r \leq R$ (coming from the base). A vertical " z-line" over a point (r, θ) on the $x y$ plane will begin on the cone, and end on the base. And integral over the cone is then

$$
\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=R} r \mathrm{~d} r \int_{z=\frac{H}{R} r}^{z=H} \mathrm{~d} z f(r, \theta, z)
$$

In particular:

$$
\begin{aligned}
V & =\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=R} r \mathrm{~d} r \int_{z=\frac{H}{R} r}^{z=H} \mathrm{~d} z \cdot 1 \\
& =(2 \pi) \int_{r=0}^{r=R} r \mathrm{~d} r\left(H-\frac{H}{R} r\right) \\
& =2 \pi H\left[\frac{r^{2}}{2}-\frac{r^{3}}{3 R}\right]_{r=0}^{r=R}=\frac{\pi R^{2} H}{3} .
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z} & =\frac{1}{V} \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=R} r \mathrm{~d} r \int_{z=\frac{H}{R} r}^{z=H} \mathrm{~d} z \cdot z \\
& =\frac{1}{V}(2 \pi) \int_{r=0}^{r=R} r \mathrm{~d} r\left[\frac{z^{2}}{2}\right]_{z=\frac{H}{R} r}^{z=H} \\
& =\frac{\pi}{V} \int_{r=0}^{r=R} r\left[H^{2}-\frac{H^{2}}{R^{2}} r^{2}\right] \mathrm{d} r \\
& =\frac{\pi H^{2}}{V}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]_{r=0}^{r=R} \\
& =\frac{\pi H^{2}}{\pi R^{2} H / 3}\left[\frac{R^{2}}{4}\right]=\frac{3}{4} H .
\end{aligned}
$$

(amusingly this doesn't depend on R). The center-of-mass must also be on the axis of symmetry (on the z-axis), so we see that it is a point $\frac{3}{4} H$ away from the apex, so $\frac{1}{4} H$ above the base.

- Each slice of constant z is a disc of radius $\frac{R}{H} z$. The integral over the cone is then

$$
\int_{z=0}^{z=H} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=\frac{R}{H} z} r \mathrm{~d} r f(r, \theta, z) .
$$

In particular,

$$
\begin{aligned}
V & =\int_{z=0}^{z=H} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=\frac{R}{H} z} r \mathrm{~d} r \cdot 1 \\
& =\int_{z=0}^{z=H} \mathrm{~d} z(2 \pi)\left(\frac{R^{2}}{H^{2}} \frac{z^{2}}{2}\right) \\
& =\frac{\pi R^{2}}{H^{2}} \int_{z=0}^{z=H} z^{2} \mathrm{~d} z \\
& =\frac{\pi R^{2}}{H^{2}} \cdot \frac{H^{3}}{3}=\frac{\pi R^{2} H}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z} & =\frac{1}{V} \int_{z=0}^{z=H} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=\frac{R}{H} z} r \mathrm{~d} r \cdot z \\
& =\frac{1}{V} \int_{z=0}^{z=H} \mathrm{~d} z z(2 \pi)\left(\frac{R^{2}}{H^{2}} \frac{z^{2}}{2}\right) \\
& =\frac{\pi R^{2} / H^{2}}{\pi R^{2} H / 3} \int_{z=0}^{z=H} z^{3} \mathrm{~d} z \\
& =\frac{3}{H^{3}} \cdot \frac{H^{4}}{4}=\frac{3}{4} H .
\end{aligned}
$$

