MATH 253 - WORKSHEET 30 TRIPLE INTEGRALS AND APPLICATIONS

(1) Consider the iterated integral $\int_{x=0}^{x=1} \mathrm{~d} x \int_{y=\sqrt{x}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z f$. Write the other 5 equivalent integrals coming from changing the order of integration.

Solution: See WS 29.
(2) Find the volume and the center-of-mass of the solid bounded by the parabolic cylinder $y=x^{2}$, the $x y$ plane, and the plane $y+z=1$.

Solution: The plane $y+z=1$ intersects the $x y$ plane (where $z=0$) in the line $y=1$. Let R be the region in the plane bounded by the parabola $y=x^{2}$ and the line $y=1$. The solid then consists of the points above R and below the plane $y+z=1$ [why? either draw a picture (which is enough for this course) or compare with the solid bound by the cylinder, the $x y$ plane, and the plane $y=1$ which contains the original solid (since the plane $y=1$ is always "farther out" than $y+z=1$ if $z \geq 0$) and by construction has base R]. Considering a point (x, y) in R, the set of points (x, y, z) in our solid lying above it is a " z-line" beginning at the base ($x y$ plane, $z=0$) and ending at the "roof" plane $y+z=1$. Converting the two endpoints to statements about z, integrals over the solid will be of the form $\iint_{R} \mathrm{~d} x \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z f(x, y, z)$. We can slice the region R itself horizontally or vertically.

- Slicing vertically, the x range is $[-1,1]$. In this range every verticle " y line" begins at at the parabolic $y=x^{2}$ and ends at the line $y=1$. The full integral is then

$$
\int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z f(x, y, z)
$$

- Slicing horizontally, the y range is $[0,1]$. In this range every horizontal " x line" beings at the left arm of the parabola (at a point where $y=x^{2}$ so $x=-\sqrt{y}$) and ends at the right arm (where $x=\sqrt{y}$). Both endpoints satisfy $y=x^{2}$ but are not the same point, since y has two square roots. The full integral is also

$$
\int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x \int_{z=0}^{z=1-y} \mathrm{~d} z f(x, y, z) .
$$

Remark: Note that the equalities $y=x^{2}$ only hold at the endpoints of our " x line", not inside the domain.
Volume: The volume V of the region is

$$
\begin{aligned}
\int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot 1 & =\int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y(1-y) \\
& =\int_{x=-1}^{x=1} \mathrm{~d} x\left[y-\frac{y^{2}}{2}\right]_{y=x^{2}}^{y=1} \\
& =\int_{x=-1}^{x=1} \mathrm{~d} x\left(1-\frac{1}{2}-x^{2}+\frac{x^{4}}{2}\right) \\
& =\left[\frac{1}{2} x-\frac{x^{3}}{3}+\frac{x^{5}}{10}\right]_{x=-1}^{x=1} \\
& =2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{10}\right)=\frac{2(15-10+3)}{30}=\frac{8}{15}
\end{aligned}
$$

Or equivalently

$$
\begin{aligned}
\int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot 1 & =\int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x(1-y) \\
& =\int_{y=0}^{y=1} \mathrm{~d} y(1-y) 2 \sqrt{y} \\
& =2\left[\frac{2}{3} y^{3 / 2}-\frac{2}{5} y^{5 / 2}\right]_{y=0}^{y=1} \\
& =4\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{8}{15}
\end{aligned}
$$

Center of mass: The region is symmetric under reflection in the x-variable. This is clear from the definitions (which only involve x^{2}), or from the integral (where the bounds on the x integral are symmetric and any later dependence is on x^{2}), so $\bar{x}=0$. We will need to integrate to find \bar{y}, \bar{z}. Using the first form of the integral, we have

$$
\begin{aligned}
\bar{y} & =\frac{1}{\text { volume }} \int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot y \\
& =\frac{1}{8 / 15} \int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y(1-y) y \\
& =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x\left[\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{y=x^{2}}^{y=1} \\
& =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x\left[\frac{1}{2}-\frac{1}{3}-\frac{x^{4}}{2}+\frac{x^{6}}{3}\right] \\
& =\frac{15}{8}\left[\frac{x}{6}-\frac{x^{5}}{10}+\frac{x^{7}}{21}\right]_{x=-1}^{x=1} \\
& =\frac{15}{8} 2\left[\frac{1}{6}-\frac{1}{10}+\frac{1}{21}\right]=\frac{15}{4}\left[\frac{35-21+10}{210}\right]=\frac{3}{7}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z} & =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot z \\
& =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x \int_{y=x^{2}}^{y=1} \mathrm{~d} y \frac{(1-y)^{2}}{2} \\
& =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x\left[\frac{(y-1)^{3}}{6}\right]_{y=x^{2}}^{y=1} \\
& =\frac{15}{8} \int_{x=-1}^{x=1} \mathrm{~d} x\left[-\frac{\left(x^{2}-1\right)^{3}}{6}\right] \\
& =\frac{15}{8 \cdot 6} \cdot 2 \int_{x=0}^{x=1} \mathrm{~d} x\left(1-3 x^{2}+3 x^{4}-x^{3}\right) \\
& =\frac{5}{8}\left[x-x^{3}+\frac{3 x^{5}}{5}-\frac{x^{7}}{7}\right]_{x=0}^{x=1} \\
& =\frac{5}{8}\left[1-1+\frac{3}{5}-\frac{1}{7}\right]=\frac{5}{8}\left[\frac{21-5}{35}\right]=\frac{2}{7} .
\end{aligned}
$$

In other other order of integration the integrals would look like

$$
\begin{aligned}
\bar{y} & =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot y \\
& =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x y(1-y) \\
& =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} x 2 \sqrt{y} \cdot y(1-y) \\
& =\frac{15}{4} \int_{y=0}^{y=1}\left(y^{3 / 2}-y^{5 / 2}\right) \\
& =\frac{15}{4}\left(\frac{2}{5}-\frac{2}{7}\right)=\frac{15}{2}\left(\frac{7-5}{35}\right)=\frac{3}{7}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z} & =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x \int_{z=0}^{z=1-y} \mathrm{~d} z \cdot z \\
& =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} y \int_{x=-\sqrt{y}}^{x=\sqrt{y}} \mathrm{~d} x \frac{(1-y)^{2}}{2} \\
& =\frac{15}{8} \int_{y=0}^{y=1} \mathrm{~d} y 2 \sqrt{y} \frac{(1-y)^{2}}{2} \\
& =\frac{15}{8} \int_{y=0}^{y=1}\left(y^{5 / 2}-2 y^{3 / 2}+y^{1 / 2}\right) \mathrm{d} y \\
& =\frac{15}{8}\left[\frac{2}{7}-2 \cdot \frac{2}{5}+\frac{2}{3}\right]=\frac{15}{4} \cdot \frac{15-42+35}{105}=\frac{2}{7}
\end{aligned}
$$

