MATH 253 - WORKSHEET 29
 TRIPLE INTEGRALS

(1) Evaluate $\iiint_{E} e^{x+y+z} \mathrm{~d} V$ where E is the tetrahedron with vertices $(3,0,0),(0,2,0),(0,0,1),(0,0,0)$.

Solution: The tetrahedron can be though of as the pyramid with its base the triangle in the $x y$ plane given by $(3,0,0),(0,2,0),(0,0,0)$ and its apex the point $(0,0,1)$. Thus (x, y) will range in the triangle, and z will range from zero to the value of z on the plane through the points $(3,0,0)$, $(0,2,0),(0,0,1)$. The equation of that plane is $\frac{x}{3}+\frac{y}{2}+\frac{z}{1}=1$ (the coefficients of x, y, z chosen so that the plane passes through the given points). The line connecting ($3,0,0$) and $(0,2,0)$ in the $x y$ plane is the intersection of this plane with the plane $z=0$ so has the equation $\frac{x}{3}+\frac{y}{2}=1$. Our integral is therefore

$$
\int_{x=0}^{x=3} \mathrm{~d} x \int_{y=0}^{y=2\left(1-\frac{x}{3}\right)} \mathrm{d} y \int_{z=0}^{z=1-\frac{x}{3}-\frac{y}{2}} \mathrm{~d} z e^{x+y+z}=\int_{x=0}^{x=3} \mathrm{~d} x e^{x} \int_{y=0}^{y=2\left(1-\frac{x}{3}\right)} \mathrm{d} y e^{y} \int_{z=0}^{z=1-\frac{x}{3}-\frac{y}{2}} \mathrm{~d} z e^{z}
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x e^{x} \int_{y=0}^{y=2\left(1-\frac{x}{3}\right)} \mathrm{d} y e^{y}\left[e^{1-\frac{x}{3}-\frac{y}{2}}-1\right]
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x e^{x} \int_{y=0}^{y=2\left(1-\frac{x}{3}\right)} \mathrm{d} y\left(e^{1-\frac{x}{3}} e^{\frac{6}{2}}-e^{y}\right)
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x e^{x}\left[2 e^{1-\frac{x}{3}} e^{\frac{y}{2}}-e^{y}\right]_{y=0}^{y=2\left(1-\frac{x}{3}\right)}
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x e^{x}\left(2 e^{1-\frac{x}{3}} e^{1-\frac{x}{3}}-e^{2\left(1-\frac{x}{3}\right)}-2 e^{1-\frac{x}{3}}+1\right)
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x e^{x}\left(e^{2\left(1-\frac{x}{3}\right)}-2 e^{1-\frac{x}{3}}+1\right)
$$

$$
=\int_{x=0}^{x=3} \mathrm{~d} x\left(e^{2+\frac{x}{3}}-2 e^{1+\frac{2 x}{3}}+e^{x}\right)
$$

$$
=\left[3 e^{2+\frac{x}{3}}-3 e^{1+\frac{2 x}{3}}+e^{x}\right]_{x=0}^{x=3}
$$

$$
=3 e^{3}-3 e^{3}+e^{3}-3 e^{2}+3 e-1
$$

$$
=e^{3}-3 e^{2}+3 e-1=(e-1)^{3}
$$

Exercise. Do the integral in differenent orders, for example $\int_{z=0}^{z=1} \mathrm{~d} z \int_{x=0}^{x=3(1-z)} \mathrm{d} x \int_{y=0}^{y=2\left(1-z-\frac{x}{3}\right)} \mathrm{d} y e^{x+y+z}$.
(2) Let E be the solid region between the plane $x=4$ and the paraboloid $x=y^{2}+z^{2}$. Set up the limits for the integral $\iiint_{E} f \mathrm{~d} V$
(a) Integrating $\int \mathrm{d} y \int \mathrm{~d} z \int \mathrm{~d} x f$.

Solution: The region is a solid of revolution: revolve the function $x=y^{2}$ about the x-axis. It has the shape of a bullet. Slices parallel to the $y z$ plane have the shape of discs of radius \sqrt{x} around the x-axis, so the shadow on the $x y$ plane is the disc $x^{2}+y^{2} \leq 4$. Given y, z the x range starts from a point on the paraboloid and ends at the "cap" $x=4$ at the base of the bullet. The integral is therefore

$$
\iint_{y^{2}+z^{2} \leq 4} \mathrm{~d} y \mathrm{~d} z \int_{x=y^{2}+z^{2}}^{x=4} \mathrm{~d} x f=\int_{y=-2}^{y=+2} \mathrm{~d} y \int_{z=-\sqrt{4-z^{2}}}^{z=+\sqrt{4-z^{2}}} \mathrm{~d} z \int_{x=y^{2}+z^{2}}^{x=4} \mathrm{~d} x f .
$$

[^0](b) Integrating $\int \mathrm{d} x \int \mathrm{~d} y \int \mathrm{~d} z f$.

Solution: We now use the observation from before directly: the slice parallel to the $y z$ plane at x is the disc $y^{2}+z^{2} \leq x$. The integral is therefore

$$
\int_{x=0}^{x=4} \mathrm{~d} x \iint_{y^{2}+z^{2} \leq x} \mathrm{~d} y \mathrm{~d} z f=\int_{x=0}^{x=4} \mathrm{~d} x \int_{y=-\sqrt{x}}^{y=+\sqrt{x}} \mathrm{~d} y \int_{z=-\sqrt{x-z^{2}}}^{z=+\sqrt{x-z^{2}}} \mathrm{~d} z f .
$$

(3) Consider the iterated integral $\int_{x=0}^{x=1} \mathrm{~d} x \int_{y=\sqrt{x}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z f$. Write the other 5 equivalent integrals coming from changing the order of integration.

Solution: We note that the range in the inner integral depends on the x, y chosen before but not on the order in which they were chosen, so we can switch the first two variables ignoring the third. Similarly, fixing x leaves us with a two-variable integral in which we can switch order as usual. To start with we switch $\mathrm{d} x \mathrm{~d} y$ to $\mathrm{d} y \mathrm{~d} x$. The domain $\{0 \leq x \leq 1, \sqrt{x} \leq y \leq 1\}$ is the region above the graph of $y=\sqrt{x}$ and below $y=1$, but it is also the region between the y-axis and the graph of $x=y^{2}$, so if

$$
I_{1}=\int_{x=0}^{x=1} \mathrm{~d} x \int_{y=\sqrt{x}}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z f
$$

we have

$$
I_{2}=\int_{y=0}^{y=1} \mathrm{~d} y \int_{x=0}^{x=y^{2}} \mathrm{~d} x \int_{z=0}^{z=1-y} \mathrm{~d} z f .
$$

The inner inegral $\mathrm{d} y \mathrm{~d} z$ in I_{1} is the integral over the triangle in the $y z$ plane with vertices $(\sqrt{x}, 0),(1,0)$ on the y-axis and $(\sqrt{x}, 1-\sqrt{x})$ off it (so the line $z=1-y$ passes through this point and $(1,0)$). The z range is thus $[0,1-\sqrt{x}]$ and the then the y-range is from the line $y=\sqrt{x}$ to the line $y=1-z$ so the integral also equals

$$
I_{3}=\int_{x=0}^{x=1} \mathrm{~d} x \int_{z=0}^{z=1-\sqrt{x}} \mathrm{~d} z \int_{y=\sqrt{x}}^{y=1-z} \mathrm{~d} y f .
$$

We can exchange the first two variables here: the integral is on the triangular wedge lying below the graph of $z=1-\sqrt{x}$ in the positive quadrant of the $x z$ plane, which is also the wedge to the left of $x=(1-z)^{2}$ in the same quadrant. The integral is then

$$
I_{4}=\int_{z=0}^{z=1} \mathrm{~d} z \int_{x=0}^{x=(1-z)^{2}} \mathrm{~d} x \int_{y=\sqrt{x}}^{y=1-z} \mathrm{~d} y f .
$$

Finally, we can exchange the order of the inner integral in I_{2} and I_{4}. In I_{2} the inner integral is on the rectangle $\left[0, y^{2}\right] \times[0,1-z]$ in the $x z$ plane (note the bounds only depend on $y!$) so can immediately switch the order to get

$$
I_{5}=\int_{y=0}^{y=1} \mathrm{~d} y \int_{z=0}^{z=1-y} \mathrm{~d} z \int_{x=0}^{x=y^{2}} \mathrm{~d} x f .
$$

In I_{4} the inner two integrals are in the region of the $x y$ plane, above the graph of $y=\sqrt{x}$ and below the constant line $y=1-z$ (they meet at $\left((1-z)^{2},(1-z)\right)$) (and to the right of the x-axis). Switching the order y will range from 0 to $1-z$ and the horizonal lines (slices) will begin at at the y-axis and end on the graph of $y=\sqrt{x}$, so

$$
I_{6}=\int_{z=0}^{z=1} \mathrm{~d} z \int_{y=0}^{y=1-z} \mathrm{~d} y \int_{x=0}^{x=y^{2}} \mathrm{~d} x f .
$$

[^0]: Date: 20/11/2013.

