MATH 253 - WORKSHEET 25 MASS AND CENTER OF MASS

Suppose we have mass distributed in a region R according to the density profile $\rho(x, y)$. Then the total mass is

$$
M=\iint_{R} \rho(x, y) \mathrm{d} A
$$

and the center of mass is located at the point (\bar{x}, \bar{y}) where

$$
\bar{x}=\frac{\iint_{R} x \rho(x, y) \mathrm{d} A}{\iint_{R} \rho(x, y) \mathrm{d} A}, \quad \bar{y}=\frac{\iint_{R} y \rho(x, y) \mathrm{d} A}{\iint_{R} \rho(x, y) \mathrm{d} A}
$$

Example. Find the center of mass of the region inside $x^{2}+y^{2}=2 y$ and outside $x^{2}+y^{2}=1$ if the density is inversely proportional to the distance from the origin.

[^0]
[^0]: Date: 6/11/2013.

