
MATH 253 � WORKSHEET 24

MORE INTEGRATION IN POLAR COORDINATES

(1) Find the volume of the solid lying above the xy-plane, below the paraboloid z = x2 + y2 and inside

the cylinder (x− 1)2 + y2 = 1.
(a) We found last time the set of points in the plane lying inside the cylinder isD = {(r, θ) | r ≤ 2 cos θ}.

Find f(r, θ) describing the height of the solid above each such point.
Solution: f(r, θ) = x2 + y2 = r2.

(b) Calculate the volume of the solid, that is
�
D
f(r, θ) dA.

Solution 1: Natural to slice in radial lines, that is for each θ integrate over 0 ≤ r ≤ 2 cos θ.
The bounding circle of D is tangent to the y-axis at the origin, so θ ranges from −π2 (downward)
to π

2 (upward). The integral is thus

� θ=π/2

θ=−π/2
dθ
� r=2 cos θ

r=0

r2r dr =
� θ=π/2

θ=−π/2
dθ
[
r4

4

]r=2 cos θ

r=0

= 4
� θ=π/2

θ=−π/2
cos4 θ dθ

= 4
� θ=+π/2

θ=−π/2

(
1
2

(1 + cos(2θ)
)2

dθ

α=2θ=
1
2

� α=π

α=−π

(
1 + 2 cosα+ cos2 α

)
dα

=
1
2

(
1 + 0 +

1
2

)
2π =

3
2
π .

Here we used: (1) The half-angle formula cos2 θ = 1
2 (1 + cos(2θ)) and (2) That the average of

cosα over a full revolution is zero, while the average of cos2 α is 1
2 (since cos2 α+sin2 α = 1). An

alternative to 2 is using the half-angle formula again: cos2 α = 1
2 (1 + cos 2α) and now integrate

from −π to π.
Solution 2: Let's slice in concentric circles. The largest r value is 2 (when θ = 0 this is
possible), so we can also write the integral as
� r=2

r=0

r3 dr
� θ=− arccos r2

θ=− arccos r2

dθ = 2
� 2

0

r3 arccos
(r

2

)
dr

r/2=cosu
= 32

� u=0

u=π/2

(
cos3 u

)
(u)(− sinu) du

by parts
= 8

[
−u · cos4 u

]u=π/2

u=0
+ 8

� u=π/2

u=0

cos4 udu

= 8
� π/2

0

cos4 udu

amd from now on we can continue as above (since cos is even this is equal to 4
� +π/2

−π/2 cos4 udu).
(2) In this problem we will �nd the electrical �eld due to a sheet of charge. Suppose we have an in�nite

conducting plate in the xy plane, containing σ units of charge per unit area. The electrical �eld due
to the plate must point vertically (why?), and can only depend on the height above the plate.
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(a) Consider a small part of the plate of area ∆A near the point (x, y, 0). What is the charge ∆q
in this small part?

Solution 1: ∆q = σ∆A (charge/unit area × area).
(a) By the inverse square law, the electrical �eld at (0, 0, z) due to the charge near (x, y, 0) is

given by the vector k∆q
|v|3 ~v where ~v is the vector between the two points. Express the vertical

component of this vector as a function of (x, y).
Solution: We have ~v = 〈−x,−y, z〉 so |~v| =

√
x2 + y2 + z2 and the projection of ~v on the

vertical axis is z. In other words, we have ∆Ez ≈ kσz
(x2+y2+z2)3/2

∆A.
(b) Express the electrical �eld at (0, 0, z) by an integral.

Solution: Summing over the contributions from the whole plate, we get

Ez =
�

R2

kσz

(x2 + y2 + z2)3/2
dA

(c) Evaluate the integral.
Solution: In polar coordinates

= kσz

� r=∞

r=0

r dr

(r2 + z2)3/2

� θ=2π

θ=0

dθ

= kσz (2π)
[

1
2

(−2)
(
r2 + z2

)−1/2
]r→∞
r=0

= kσz (2π)
1
z

= 2πkσ .

Notes: (1) For the whole plane we go over all angles (0 ≤ θ ≤ 2π) and all radii (0 ≤ r < ∞).

(2) The derivative of
(
r2 + z2

)−1/2
is − 1

2
2r

(r2+z2)3/2
which is our integrand up to constant (3)

As r →∞ 1√
r2+z@

→ 0.

(d) Can you �nd a function φ(x, y, z) (�Electric potential�) such that −~∇φ = ~E?

Solution: ~E(x, y, z) = 2πkσ 〈0, 0, 1〉 since the by rotational symmetry the �eld must point up

or down. Since ~∇φ is perpendicular to the level sets, we see that the level sets must be planes

parallel to the xy plane, so φ can depend on z alone. Then ~∇φ =
〈

0, 0, ∂φ∂z
〉
and if this is

constant we see that φ must be propotional to z, speci�cally that φ(x, y, z) = −2πkσz.
(3) In this problem we will �nd the area under the �bell curve�. Let I =

� +∞
−∞ e−x

2
dx, and let J =�

R2 e
−x2−y2

dA (integral over the whole plane).
(a) Using an iterated integral in the xy coordinates relate J to I.

Solution:�
R2
e−x

2−y2
dA =

� +∞

−∞
dx
� +∞

−∞
dye−x

2−y2
=
� +∞

−∞
dxe−x

2
� +∞

−∞
dye−y

2

=
(� +∞

−∞
dxe−x

2
)(� +∞

−∞
dye−y

2
)

= I2 .

Note: realizing that
� +∞
−∞ dye−y

2
=
� +∞
−∞ dxe−x

2
= I wasn't easy. We are slowly working on

developing the needed mental �exibility.
(b) Switch to polar coordinates and evaluate J .

Solution: J =
� θ=2π

θ=0
dθ
� r=∞
r=0

r dre−r
2

= 2π 1
2

�∞
u=0

e−u du = π where we substituted u = r2

and used
�∞

0
e−u du = 1.

(c) Given σ > 0 �nd a number Z such that
� +∞
−∞

(
1
Z e
−x2/2σ2

)
dx = 1.

Solution:
� +∞
−∞

(
1
Z e
−x2/2σ2

)
dx

u=x/
√

2σ
= 1

Z

√
2σ
� +∞
−∞ e−u

2
du = 1

Z

√
2σ
√
π =

√
2πσ2

Z so we need

to choose Z =
√

2πσ2.
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(4) The electric potential at a point Z due to a charge q at the point X is kq˛̨̨−−→
XZ

˛̨̨ . Find the electrical

potential at height z above the middle of a square plate of side length 2a, if the charge density is σ.
Solution: Parametrize the points on the plate as {(x, y, 0) | −a ≤ x, y ≤ a}. Then the distance

to the point (0, 0, z) above the middle of the plate is
√
x2 + y2 + z2, so the integral is

φ(z) =
�

[−a,a]2

kσ dA√
x2 + y2 + z2

(recall that σ dA is the in�nitesimal charge at the area element
dA). We convert this integral to polar coordinates. For this we divide the plate into eight triangles
as in the left part of the �gure below. Each of those has the same contribution (since any two di�er
only by changing the sign of x or y or both, or by exchanging x and y). So the total potential is eight
times the potential created by the triangle magni�ed in the right-hand side. We parameterize the

point (x, y) instead by (r, θ) as in the �gure. Then
(
x2 + y2 + z2

)−1/2 =
(
r2 + z2

)−1/2
. Also, we can

see that r is at least zero, and at most the length of the hypotenuse in the right triangle below with
angle θ and side a. It follows that the triangle can be described as

{
(r, θ) | 0 ≤ θ ≤ π

4 , 0 ≤ r ≤ a
cos θ

}
.

The integral is then

8kσ
� θ=π

4

θ=0

dθ
� r= a

cos θ

r=0

r dr

(r2 + z2)−1/2
= 8kσ

� θ=π
4

θ=0

dθ
[(
r2 + z2

)1/2]r=a/ cos θ

r=0

= 8kσ
� θ=π

4

θ=0

dθ

[√
a2

cos2 θ
+ z2 − z

]

= 8kσ
� θ=π

4

θ=0

√
a2

cos2 θ
+ z2 dθ − 2πkσz .

Remark. The solution up to here was very di�cult (many ideas were needed, and using polar coor-
dinates on a triangle would not occur to anyone), but within the scope of 253. Actually calculating
the remaining integral is not.

We now concentrate on the remaining integral. It seems natural to write the integrand as√
a2+z2 cos2 θ

cos θ =
√
a2+z2 cos2 θ

cos2 θ cos θ since cos θ dθ = d (sin θ). Changing variables this way we see
that

� θ=π
4

θ=0

√
a2

cos2 θ
+ z2 dθ =

� u=1/
√

2

u=0

√
a2 + z2 − z2u2

1− u2
du .
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We can get rid of the square root by setting u =
√
a2+z2

z sinα so that
√

(a2 + z2)− z2u2 =√
a2 + z2 cosα, leading so the integral equals

=
a2 + z2

z

� u=1/
√

2

u=0

cosα
1− a2+z2

z2 sin2 α
cosα dα

= z(a2 + z2)
� u=1/

√
2

u=0

cos2 α dα
z2 − (a2 + z2) sin2 α

= z

� u=1/
√

2

u=0

cos2 α

cos2 α− a2

a2+z2

dα .

For convenience set A = a2

a2+z2 . We then remove the cos2 α from the numerator, in preparation for
a trick

= z

� u=1/
√

2

u=0

[
cos2 α−A
cos2 α−A

+
A

cos2 α−A

]
dα .

We can do the �rst integral, noting that u = 0 corresponds to α = 0 and u = 1/
√

2 corresponds to
α = arcsin z√

2(a2+z2)
so

z

� u=1/
√

2

u=0

1 dα = z arcsin
z√

2(a2 + z2)
.

For the second integral, we divide through by 1
cos2 α and recall that 1

cos2 α = 1 + tan2 α = d(tanα)
dα , so

setting t = tanα we have

z

� u=1/
√

2

u=0

Adα
cos2 α−A

= z

� u=1/
√

2

u=0

1
1
A −

1
cos2 α

dα
cos2 α

= zA

� u=1/
√

2

u=0

1
1
A − (1 + t2)

dt

= z

� u=1/
√

2

u=0

1
1−A
A − t2

dt .

Now,

1−A
A

=
1− a2

a2+z2

a2

a2+z2

=
z2

a2
.

This integral therefore equals

= z
a

2z

� u=1/
√

2

u=0

(
1

z
a + t

+
1

z
a − t

)
dt

=
a

2

[
log

z
a + t
z
a − t

]u=1/
√

2

u=0

.

Now at u = 0 we have α = 0 and thus t = tan 0 = 0, at which point the logarithm vanishes. At
u = 1/

√
2 we have sinα = z√

2(a2+z2)
so

cosα =
√

1− sin2 α =

√
1− z2

2(a2 + z2)
=

√
2a2 + z2

2a2 + 2z2
.

Thus at u = 1√
2
we have

t =
z√

2a2 + z2
.
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In conclusion,
� u=1/

√
2

u=0

√
a2 + z2 − z2u2

1− u2
du = z arcsin

z√
2(a2 + z2)

+
a

2
log

z
a + z√

2a2+z2

z
a −

z√
2a2+z2

= z arcsin
z√

2(a2 + z2)
+
a

2
log
√

2a2 + z2 + a√
2a2 + z2 − a

and the potential is therefore

φ(z) = 8kσz arcsin
z√

2(a2 + z2)
+ 4kσa log

√
2a2 + z2 + a√
2a2 + z2 − a

− 2πkσz .

The following is entirely unrelated to MATH 253.
Let's use Taylor expansions + physics intuition to check this kind of complicated answer. We'll examine

the behaviour as z → 0 and when z →∞ and check if it looks reasonable.

(1) As z → 0, z arcsin
(

z√
2(a2+z2)

)
and log

√
2a2+z2+a√
2a2+z2−a are even functions of z, so jointly have a Taylor

expansion 4kσa log
√

2+1√
2−1

+Cz2 + · · · for some C. It follows that for small z, our potential looks like

φ(z) ≈ 4kσa log
√

2 + 1√
2− 1

− 2πkσz + · · ·

In this approximation, the closer we are to the plate the more it looks in�nite, and indeed the non-
constant term matches the answer to 2(d). What about the constant term? Recall that φ(z) in 2(d)
was determined by its gradient, so we could put in it whatever constant we wanted � so in fact the
answers match, except for higher-order corrections (terms in Taylor series).

(2) As z →∞,

z√
2(a2 + z2)

=
1√
2

(
1 +

a2

z2

)−1/2

≈ 1√
2
− 1

2
√

2
a2

z2
.

Since the derivative of arcsinx at x = 1√
2
is 1√

1−(1/
√

2)2
=
√

2, we make a linear approximation to

see that as z →∞,

8kσz arcsin
z√

2(a2 + z2)
≈ 8kσz

[
π

4
− 1

2
a2

z2

]
= 2πkσz − 4kσa2

z
.

For the second term,

√
2a2 + z2 + a√
2a2 + z2 − a

=

(
1 + 2a2

z2

)1/2

+ a
z(

1 + 2a2

z2

)1/2 − a
z

≈
1 + a

z + a2

z2

1− a
z + a2

z2

≈
1 + a

z

1− a
z

=

(
1 + a

z

)2
1− a2

z2

≈
(

1 +
a

z

)2

to �rst order in 1
z (that is, ignoring terms like 1

z2 or higher). Taking log we see that

4kσa log
√

2a2 + z2 + a√
2a2 + z2 − a

≈ 8kσa log
(

1 +
a

z

)
≈ 8kσa

a

z
.

Adding up everything we see that as z →∞

φ(z) ≈ 2πkσz − 4kσa2

z
+

8kσa2

z
− 2πkσz

=
4kσa2

z
= k

(
σ(2a)2

)
z

.
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Now (2a)2 is the area of the plate, so σ(2a)2 is the total charge of the plate. In other words, as
z → ∞, φ(z) is approximately the potential due to a charge equal to the total charge of the plate,
placed at the origin. This is what we expect (from very far away, the plate really looks like a
point-like object).
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