MATH 253 - WORKSHEET 23

POLAR COORDINATES AND INTEGRATION

1. Polar coordinates

Given (x, y) set $r=\sqrt{x^{2}+y^{2}}, \theta=\arctan \left(\frac{y}{x}\right)$. Given (r, θ) set $x=r \cos \theta, y=r \sin \theta$.

(1) Let $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 2, x, y \geq 0\right\}$.
(a) Express D in the form $D=\{(r, \theta) \mid ? ?\}$
(b) Try expressing $\iint_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} A$ as an iterated integral, slicing the domain vertically.
(c) Calculate $\iint_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} A$ in polar coordinates.
(2) Find the volume of the solid lying above the $x y$-plane, below the paraboloid $z=x^{2}+y^{2}$ and inside the cylinder $(x-1)^{2}+y^{2}=1$.
(a) Find a region R in the plane and a function $f(x, y)$ so that the volume is $\iint_{R} f(x, y) \mathrm{d} A$.
(b) Write R and f in polar coordinates.
(c) Evaluate the integral.
(Image credit: user Met501 and others on Wikipedia; see http://en.wikipedia.org/wiki/File:Polar_ to_cartesian.svg. Accordingly, this PDF is published under the CC Attribution-ShareAlike-Unported 3.0 license)

