MATH 253 – WORKSHEET 23 POLAR COORDINATES AND INTEGRATION

1. Polar coordinates

- (1) Let $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 2, x, y \ge 0\}.$ (a) Express D in the form $D = \{(r, \theta) \mid ??\}$
 - (a) Express *D* in the form $D = \{(r, \theta) \mid 1 \}$ **Solution**: The first condition reads $1 \le r^2 \le 2$ or $1 \le r \le \sqrt{2}$. For the second condition, geometrically we see that $0 \le \theta \le \frac{\pi}{2}$. Algebraically, $x, y \ge 0$ means both $r \cos \theta \ge 0$ and $r \sin \theta \ge 0$. Since *r* is non-negative this means $\sin \theta, \cos \theta \ge 0$. The first means $0 \le \theta \le \pi$, and the second means $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, so we again get $0 \le \theta \le \frac{\pi}{2}$ and the region is $\{(r, \theta) \mid 1 \le r \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{2}\}$.
 - {(r,θ) | 1 ≤ r ≤ √2, 0 ≤ θ ≤ π/2}.
 (b) Try expressing ∬_D cos (x² + y²) dA as an iterated integral, slicing the domain vertically.
 Solution: For 0 ≤ x ≤ 1, the vertical slices begin at the inner circle and end on the outer circle. For 1 ≤ x ≤ √2, the vertical slices begin at the x-axis and end on the outer circle. The integral is therfore

$$\int_{x=0}^{x=1} \mathrm{d}x \int_{y=\sqrt{1-x^2}}^{y=\sqrt{2-x^2}} \mathrm{d}y \cos\left(x^2+y^2\right) + \int_{x=1}^{x=\sqrt{2}} \mathrm{d}x \int_{y=0}^{y=\sqrt{2-x^2}} \mathrm{d}y \cos\left(x^2+y^2\right)$$

(c) Calculate $\iint_D \cos(x^2 + y^2) dA$ in polar coordinates. Solution: This is

$$\int_{\theta=0}^{\theta=\frac{\pi}{2}} \mathrm{d}\theta \int_{r=1}^{r=\sqrt{2}} r \,\mathrm{d}r \cos\left(r^{2}\right) = \left(\int_{\theta=0}^{\theta=\frac{\pi}{2}} \mathrm{d}\theta\right) \left(\int_{r=1}^{r=\sqrt{2}} \cos\left(r^{2}\right) r \,\mathrm{d}r\right) \\ = \frac{\pi}{2} \left[\frac{1}{2}\sin(r^{2})\right]_{r=1}^{r=\sqrt{2}} = \frac{\pi\left(\sin 2 - \sin 1\right)}{4} \,.$$

- (2) Find the volume of the solid lying above the xy-plane, below the paraboloid $z = x^2 + y^2$ and inside the cylinder $(x-1)^2 + y^2 = 1$.
 - (a) Find a region R in the plane and a function f(x, y) so that the volume is $\iint_R f(x, y) \, dA$. **Solution**: Points inside the cylinder have (x, y) belonging to $R = \{(x, y) \mid (x - 1)^2 + y^2 \le 1\}$. Volume is then

$$\iint_R z \, \mathrm{d}A = \iint_R (x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y$$

(b) Write R and f in polar coordinates.

Solution: Setting $x = r \cos \theta$, $y = r \sin \theta$, we have $r^2 \cos^2 \theta - 2r \cos \theta + 1 + r^2 \sin^2 \theta \le 1$. Subtracting the 1 and using $\cos^2 \theta + \sin^2 \theta = 1$ this isequivalent to $r^2 \le 2r \cos \theta$, and dividing by r (which is always positive) this is equivalent to $r \le 2 \cos \theta$. Since the region is on the right of the y axis, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, so $R = \{(r, \theta) \mid -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, r \le 2 \cos \theta\}$. $x^2 + y^2 = r^2$ so $f(r, \theta) = r^2$. (c) Evaluate the integral.

Solution: See solution to WS 24

Date: 1/11/2013.