MATH 253 - WORKSHEET 23 POLAR COORDINATES AND INTEGRATION

1. Polar coordinates

(1) Let $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 2, x, y \geq 0\right\}$.
(a) Express D in the form $D=\{(r, \theta) \mid$?? $\}$

Solution: The first condition reads $1 \leq r^{2} \leq 2$ or $1 \leq r \leq \sqrt{2}$. For the second condition, geometrically we see that $0 \leq \theta \leq \frac{\pi}{2}$. Algebraically, $x, y \geq 0$ means both $r \cos \theta \geq 0$ and $r \sin \theta \geq 0$. Since r is non-negative this means $\sin \theta, \cos \theta \geq 0$. The first means $0 \leq$ $\theta \leq \pi$, and the second means $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, so we again get $0 \leq \theta \leq \frac{\pi}{2}$ and the region is $\left\{(r, \theta) \mid 1 \leq r \leq \sqrt{2}, 0 \leq \theta \leq \frac{\pi}{2}\right\}$.
(b) Try expressing $\iint_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} A$ as an iterated integral, slicing the domain vertically.

Solution: For $0 \leq x \leq 1$, the vertical slices begin at the inner circle and end on the outer circle. For $1 \leq x \leq \sqrt{2}$, the vertical slices begin at the x-axis and end on the outer circle. The integral is therfore

$$
\int_{x=0}^{x=1} \mathrm{~d} x \int_{y=\sqrt{1-x^{2}}}^{y=\sqrt{2-x^{2}}} \mathrm{~d} y \cos \left(x^{2}+y^{2}\right)+\int_{x=1}^{x=\sqrt{2}} \mathrm{~d} x \int_{y=0}^{y=\sqrt{2-x^{2}}} \mathrm{~d} y \cos \left(x^{2}+y^{2}\right)
$$

(c) Calculate $\iint_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} A$ in polar coordinates.

Solution: This is

$$
\begin{aligned}
\int_{\theta=0}^{\theta=\frac{\pi}{2}} \mathrm{~d} \theta \int_{r=1}^{r=\sqrt{2}} r \mathrm{~d} r \cos \left(r^{2}\right) & =\left(\int_{\theta=0}^{\theta=\frac{\pi}{2}} \mathrm{~d} \theta\right)\left(\int_{r=1}^{r=\sqrt{2}} \cos \left(r^{2}\right) r \mathrm{~d} r\right) \\
& =\frac{\pi}{2}\left[\frac{1}{2} \sin \left(r^{2}\right)\right]_{r=1}^{r=\sqrt{2}}=\frac{\pi(\sin 2-\sin 1)}{4}
\end{aligned}
$$

(2) Find the volume of the solid lying above the $x y$-plane, below the paraboloid $z=x^{2}+y^{2}$ and inside the cylinder $(x-1)^{2}+y^{2}=1$.
(a) Find a region R in the plane and a function $f(x, y)$ so that the volume is $\iint_{R} f(x, y) \mathrm{d} A$.

Solution: Points inside the cylnder have (x, y) belonging to $R=\left\{(x, y) \mid(x-1)^{2}+y^{2} \leq 1\right\}$.
Volume is then

$$
\iint_{R} z \mathrm{~d} A=\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

(b) Write R and f in polar coordinates.

Solution: Setting $x=r \cos \theta, y=r \sin \theta$, we have $r^{2} \cos ^{2} \theta-2 r \cos \theta+1+r^{2} \sin ^{2} \theta \leq 1$. Subtracting the 1 and using $\cos ^{2} \theta+\sin ^{2} \theta=1$ this isequivalent to $r^{2} \leq 2 r \cos \theta$, and dividing by r (which is always positive) this is equivalent to $r \leq 2 \cos \theta$. Since the region is on the right of the y axis, $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, so $R=\left\{(r, \theta) \left\lvert\,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right., r \leq 2 \cos \theta\right\} . x^{2}+y^{2}=r^{2}$ so $f(r, \theta)=r^{2}$.
(c) Evaluate the integral.

Solution: See solution to WS 24

[^0]
[^0]: Date: 1/11/2013.

