MATH 253 - WORKSHEET 22 ITERATED INTEGRALS ON PLANAR DOMAINS

(1) Let D be the finite region bounded by the curves $x=y$ and $x=2-y^{2}$. Find $\iint_{D} y \mathrm{~d} A$, slicing the domain vertically.

Solution:

(2) Let $D=\left\{x^{2}+y^{2} \leq 4\right\}$. Evaluate $\iint_{R}\left(e^{y} x^{2} \tan \left(\frac{x}{2}\right)+\sin \left(y^{3}\right)+5\right) \mathrm{d} A$.

Solution: $\iint_{D}\left(e^{y} x^{2} \tan \left(\frac{x}{2}\right)+\sin \left(y^{3}\right)+5\right) \mathrm{d} A=\iint_{D} e^{y} x^{2} \tan \left(\frac{x}{2}\right) \mathrm{d} A+\iint_{D} \sin \left(y^{3}\right) \mathrm{d} A+\iint_{D} 5 \mathrm{~d} A$. Now the first summand is odd in x, and the domain is symmetric under reflection in the y-axis, so $\iint_{D} e^{y} x^{2} \tan \left(\frac{x}{2}\right) \mathrm{d} A=0$. Similarly, $\sin \left(y^{3}\right)$ is odd in y and the domain is symmetric under reflection in the x-axis, so $\iint_{D} \tan \left(y^{3}\right) \mathrm{d} A=0$. Finally, $\iint_{D} 5 \mathrm{~d} A=5 \iint_{D} 1 \mathrm{~d} A=5$ Area $(D)=5 \pi \cdot 2^{2}=20 \pi$.
(3) Integrate $f(x, y)=e^{y^{2}}$ on the triangle with vertices $(0,0),(0,3),(1,3)$.

Solution: Slicing vertically, x ranges in $[0,1]$ and for each x we have $3 x \leq y \leq 3(y=3 x$ is the equation of the line connecting $(0,0)$ to $(1,3))$. The integral is therefore

$$
\int_{x=0}^{x=1} \mathrm{~d} x \int_{y=3 x}^{y=3} \mathrm{~d} y e^{y^{2}}
$$

OOPS: we don't know an antiderivative for $e^{y^{2}}$, so we try slicing horizontally instead. Now the integral is

$$
\int_{y=0}^{y=3} \mathrm{~d} y \int_{x=0}^{x=y / 3} \mathrm{~d} x e^{y^{2}}=\int_{y=0}^{y=3} e^{y^{2}} \frac{y}{3} \mathrm{~d} y=\frac{1}{6}\left[e^{y^{2}}\right]_{y=0}^{y=3}=\frac{e^{9}-1}{6} .
$$

(4) Reverse the order of integration in $\int_{x=1}^{x=2} \int_{y=0}^{\ln x} f(x, y) \mathrm{d} y \mathrm{~d} x$.

Solution: The range of y values is between $y=0$ and $y=\ln 2$ (the largest upper bound on y). Given y, we see that (x, y) is in the region if $1 \leq x \leq 2$ (from bounds on the first integral) and also $y \leq \ln x$ (bound on the second integral). The latter condition can be written as $x \geq e^{y}$, so we must have $1 \leq x \leq 2$ and also $x \geq e^{y}$. Now in our region $y \geq 0$ so $e^{y} \geq e^{0}=1$ so the condition $x \geq 1$ is redundant. Also, if $y \leq \ln 2$ then $e^{y} \leq 2$ so the interval $\left[e^{y}, 2\right]$ is always non-empty. We conlcude that the integral is also

$$
\int_{y=0}^{y=\ln 2} \int_{x=e^{y}}^{x=2} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

[^0]
[^0]: Date: 30/10/2013.

