MATH 253 - WORKSHEET 20 ITERATED INTEGRALS ON RECTANGLES

Theorem (Fubini). Let $f(x, y)$ be integrable on the rectangle $R=[a, b] \times[c, d]$. Then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{y=c}^{y=d} \mathrm{~d} y\left(\int_{x=a}^{x=b} \mathrm{~d} x f(x, y)\right)=\int_{x=a}^{x=b} \mathrm{~d} x\left(\int_{y=c}^{y=d} \mathrm{~d} y f(x, y)\right)
$$

(1) Integrate $f(x, y)=(1-y) x$ on $[2,3] \times[4,5]$.

Solution: $\iint_{[2,3] \times[4,5]}(1-y) x \mathrm{~d} x \mathrm{~d} y=\int_{y=4}^{y=5} \mathrm{~d} y \int_{x=2}^{x=3} \mathrm{~d} x(1-y) x=\int_{y=4}^{y=5} \mathrm{~d} y(1-y) \int_{x=2}^{x=3} \mathrm{~d} x x$ since $(1-y)$ is constant in the inner integral. Therefore:

$$
\begin{aligned}
\iint_{[2,3] \times[4,5]}(1-y) x \mathrm{~d} x \mathrm{~d} y & =\left(\int_{y=4}^{y=5} \mathrm{~d} y(1-y)\right) \cdot\left(\int_{x=2}^{x=3} \mathrm{~d} x x\right) \\
& =\left[-\frac{1}{2}(1-y)^{2}\right]_{y=4}^{y=5} \cdot\left[\frac{1}{2} x^{2}\right]_{x=2}^{x=3} \\
& =-\frac{1}{4}[16-9][9-4]=-\frac{35}{4} .
\end{aligned}
$$

Note the general feature that

$$
\iint_{[a, b] \times[c, d]} f(x) g(y) \mathrm{d} x \mathrm{~d} y=\left(\int_{a}^{b} f(x) \mathrm{d} x\right)\left(\int_{a}^{b} g(y) \mathrm{d} y\right) .
$$

(2) Integrate $f(x, y)=x\left(y+x^{2}\right)$ on $R=[0,1] \times[0,1]$.

Solution 1: By Fubini, $\iint_{R} x\left(y+x^{2}\right) \mathrm{d} x \mathrm{~d} y=$

$$
\begin{aligned}
& =\int_{x=0}^{x=1} \mathrm{~d} x x \int_{y=0}^{y=1}\left(y+x^{2}\right) \mathrm{d} y \\
& =\int_{x=0}^{x=1} \mathrm{~d} x x\left[\frac{1}{2} y^{2}+y x^{2}\right]_{y=0}^{y=1} \\
& =\int_{x=0}^{x=1} \mathrm{~d} x x\left(x^{2}+\frac{1}{2}\right) \\
& =\left[\frac{x^{2}}{4}+\frac{x^{4}}{4}\right]_{x=0}^{x=1}=\frac{1}{2} .
\end{aligned}
$$

Solution 2: $\iint_{R} x\left(y+x^{2}\right) \mathrm{d} x \mathrm{~d} y=\iint_{R} x y \mathrm{~d} x \mathrm{~d} y+\iint_{R} x^{3} \mathrm{~d} x \mathrm{~d} y$. Now apply Fubini to see the integral is

$$
\left(\int_{0}^{1} x \mathrm{~d} x\right)\left(\int_{0}^{1} y \mathrm{~d} y\right)+\left(\int_{0}^{1} x^{3} \mathrm{~d} x\right)\left(\int_{0}^{1} 1 \mathrm{~d} y\right)=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{4} \cdot 1=\frac{1}{2} .
$$

(3) Evaluate $\iint_{[-1,1] \times[0,1]} \frac{y \sin x}{1+\cos ^{2} y} \mathrm{~d} x \mathrm{~d} y$. What is the integral of $f(x, y)=(x+y) e^{-x^{4}-y^{4}}$ on the plane?

Solution: The first function is odd in x, and the domain is symmetric in x, so the integral is zero. The second function is odd under rotating the plane by π (changing $x \rightarrow-x, y \rightarrow-y$) so

[^0]again the integral is zero. For the second function can also write it as $x e^{-x^{4}-y^{4}}+y e^{-x^{4}-y^{4}}$ where the first term is odd in x, the second in y so each integrates to zero separately.
(4) Find the average value of $f(x, y)=e^{y} \sqrt{x+e^{y}}$ over the rectangle $[0,4] \times[0,1]$.

Solution: The average is the integral over the domain divided by the area of the domain, that is

$$
\begin{aligned}
& \frac{1}{4} \int_{x=0}^{x=4} \mathrm{~d} x \int_{y=0}^{y=1} \sqrt{x+e^{y}} e^{y} \mathrm{~d} y \stackrel{u=e^{y}}{=} \frac{1}{4} \int_{x=0}^{x=4} \mathrm{~d} x \int_{u=1}^{u=e} \sqrt{x+u} \mathrm{~d} u \\
&=\frac{1}{4}\left[\frac{2}{3}(x+u)^{3 / 2}\right]_{u=1}^{u=e} \\
&=\frac{1}{6} \int_{x=0}^{x=4} \mathrm{~d} x\left[(x+e)^{3 / 2}-(x+1)^{3 / 2}\right] \\
&=\frac{1}{6}\left[\frac{2}{5}(x+e)^{5 / 2}-\frac{2}{5}(x+1)^{5 / 2}\right]_{x=0}^{x=4} \\
&=\frac{1}{15}\left[(4+e)^{5 / 2}-5^{5 / 2}-e^{5 / 2}+1\right]
\end{aligned}
$$

[^0]: Date: 25/10/2013.

