MATH 253 - WORKSHEET 19 INTEGRATION ON RECTANGLES

Let $f(x, y)$ be defined on a region R. Approximately divide the region R into small rectangles around sample points $\left(x_{i}, y_{j}\right)$ of size Δx_{i} by Δy_{j}. Then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\lim _{N, M \rightarrow \infty} \sum_{i=1}^{N} \sum_{j=1}^{M} f\left(x_{i}, y_{j}\right) \Delta x_{i} \Delta y_{j}
$$

$\Delta x_{i} \Delta y_{j}$ is exactly the area of the small rectangle, so $f\left(x_{i}, y_{i}\right) \Delta x_{i} \Delta y_{j}$ is approximately the volume of the part of the solid above this small rectangle.

Example 1. Let A be the solid lying above the rectangle $R=[0,3] \times[0,2]$ and below the graph of $z=x+y$. Approximate the volume of A by:
(1) Dividing R into 4 equal rectangles and using the midpoints.

each little rectangle has area $\frac{3}{2} \times 1=1$, so volume

$$
\approx(0.75+0.5) \frac{3}{2}+(2.25+0.5)^{2} \frac{3}{2}+(0.75+1.5) \frac{3}{2}+(2.25+1.5) \frac{3}{2}=15
$$

(2) Dividing R into 6 equal squares and using the lower left corners.

each little rectangle has area $1 \times 1=1$, so volume

$$
\approx(0+0)+(1+0)+(2+0)+(0+1)+(1+1)+(2+1)=11
$$

(3) Dividing R into 6 equal squares and using the midpoints.

each little rectangle has area $1 \times 1=1$, so volume
$\approx(0.5+0.5)+(1.5+0.5)+(2.5+0.5)+(0.5+1.5)+(1.5+1.5)+(2.5+1.5)=15$.
Remark. The exact volume happens to be 15 .

