MATH 253 - WORKSHEET 17
 LAGRANGE MULTIPLIERS

1. Optimization

1.1. Ordinary optimization. Suppose we want to find the maximum or minimum of $f(x, y)$ in a region R. We solve the system of equations $\vec{\nabla} f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$ to find the critical points, and then evaluate f at critical points and on the boundary of R.
1.2. Constrained optimization. Suppose we want to find the maximum or minimum of $f(x, y)$ subject to the constraint $g(x, y)=0$. Fact: any local maximum/minimum on the level set of g occurs at a point $\left(x_{0}, y_{0}\right)$ where $\vec{\nabla} f$ is proportional to $\vec{\nabla} g$. In other words, to find local maxima/minima we solve the system of equations

$$
\begin{cases}\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) & =\lambda \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) \\ \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =\lambda \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) \\ g\left(x_{0}, y_{0}\right) & =0\end{cases}
$$

where the unknowns are x_{0}, y_{0}, λ.

2. Problems

(1) Find the equation of the plane which passes through $(1,2,3)$ and encloses the smallest volume in the positive octant.

[^0](2) Find the absolute max and min of $f(x, y)=x^{3} y^{2}-2 y^{4} x+2 x$ on $\left\{x^{2}+y^{2} \leq 4\right\}$.

[^0]: Date: 18/10/2013

