MATH 253 - WORKSHEET 17 LAGRANGE MULTIPLIERS

1. Optimization

1.1. Ordinary optimization. Suppose we want to find the maximum or minimum of $f(x, y)$ in a region R. We solve the system of equations $\vec{\nabla} f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$ to find the critical points, and then evaluate f at critical points and on the boundary of R.
1.2. Constrained optimization. Suppose we want to find the maximum or minimum of $f(x, y)$ subject to the constraint $g(x, y)=0$. Fact: any local maximum/minimum on the level set of g occurs at a point $\left(x_{0}, y_{0}\right)$ where $\vec{\nabla} f$ is proportional to $\vec{\nabla} g$. In other words, to find local maxima/minima we solve the system of equations

$$
\begin{cases}\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) & =\lambda \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) \\ \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =\lambda \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) \\ g\left(x_{0}, y_{0}\right) & =0\end{cases}
$$

where the unknowns are x_{0}, y_{0}, λ.

2. Problems

(1) Find the equation of the plane which passes through $(1,2,3)$ and encloses the smallest volume in the positive octant.

Solution: Suppose the plane meets the axes at $(a, 0,0),(0, b, 0),(0,0, c)$ [parametrization step]. The volume of the enclosed pyramid is then $V(a, b, c)=\frac{1}{6} a b c$ [express quantity in problem in terms of the parameters]. The equation of the plane through these points is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ [express object in the problem in terms of the parameters], and this passes through $(1,2,3)$ iff $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1$ [express condition in the problem in terms of the paraemters]. We therefore need to minimize $V(a, b, c)$ subject go $g(a, b, c)=1$ where $g(a, b, c)=\frac{1}{a}+\frac{2}{b}+\frac{3}{c}$ [final restatement involving only mathematical functions]. By the method of Lagrange multipliers, at any local minimum there is λ such that

$$
\begin{cases}\frac{\partial V}{\partial a} & =\lambda \frac{\partial g}{\partial a} \\ \frac{\partial V}{\partial b} & =\lambda \frac{\partial g}{\partial b} \\ \frac{\partial V}{\partial c} & =\lambda \frac{\partial g}{\partial c} \\ g(a, b, c) & =1\end{cases}
$$

that is [convert problem to equations for the parameters]

$$
\left\{\begin{array}{ll}
\frac{1}{6} b c & =-\frac{\lambda}{a^{2}} \\
\frac{1}{6} b c & =-\frac{2 \lambda}{b^{2}} \\
\frac{1}{6} b c & =-\frac{3 \lambda}{c^{2}} \\
\frac{1}{a}+\frac{2}{b}+\frac{3}{c} & =1
\end{array} .\right.
$$

[Now we solve the equation] First, $\lambda \neq 0$ since otherwise one of a, b, c would be zero which is impossible (the plane would pass through the origin and not enclose a finite volume). We now divide each equation by λ and multiply by $-a,-b,-c$ respectively to find

$$
\frac{1}{a}=\frac{2}{b}=\frac{3}{b}=-\frac{a b c}{6 \lambda}
$$

From the constraint we see that the three equal numbers $\frac{1}{a}, \frac{2}{b}, \frac{3}{c}$ add to 1 , so each is equal to $\frac{1}{3}$. We conlcude that $a=3, b=6, c=9$. [Finally, use the values of the parameters to solve the actual problem] It follows that the minimal volume is $\frac{1}{6} 3 \cdot 6 \cdot 9=27$ and it occurs for the plane $\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$.
(2) Find the absolute max and min of $f(x, y)=x^{3} y^{2}-2 y^{4} x+2 x$ on $\left\{x^{2}+y^{2} \leq 4\right\}$.

Solution: At the start we have an ordinary optimization problem, so we start by looking for critical points in the interior of the domain. These occur at (x, y) where:

$$
\begin{cases}f_{x}=3 x^{2} y^{2}-2 y^{4}+2 & =0 \\ f_{y}=2 x^{3} y-8 y^{3} x & =0\end{cases}
$$

Rewriting the second equation as $2 x y\left(x^{2}-4 y^{2}\right)=0$ we see that at any critical point we either have $x=0$ or $y=0$ or $x= \pm 2 y$. But $f_{x}(x, 0)=2 \neq 0$ so no critical point has $y=0$ and if $x^{2}=4 y^{2}$ then $f_{x}(x, y)=12 y^{4}-2 y^{4}+2=10 y^{4}+2 \geq 2>0$ so no critical point has $x= \pm 2 y$ either. But if $x=0$ then $f_{x}=0$ iff $2\left(1-y^{4}\right)=0$ iff $y= \pm 1$, so we have critical points at $(0, \pm 1)$. Since $f(0, y)=0$, at both critical points the function vanishes.
Next, we consider the boundary. We need to minimize and maximize f on the circle $x^{2}+y^{2}=4$. By the method of Lagrange multipliers, the maximum and minimum occur at points x, y where

$$
\begin{cases}3 x^{2} y^{2}-2 y^{4}+2 & =2 \lambda x \\ 2 x y\left(x^{2}-4 y^{2}\right) & =2 \lambda y \\ x^{2}+y^{2} & =4\end{cases}
$$

The second equation seems simplest so we start with it. If $y=0$ we simply evaluate f to find $f(\pm 2,0)= \pm 4$ (so we now see that the two critical points are neither the maximum nor the minimum). If $y \neq 0$ then the second equation implies

$$
2 x\left(x^{2}-4 y^{2}\right)=2 \lambda
$$

Multiplying by x and combining with the first equation we get

$$
3 x^{2} y^{2}-2 y^{4}+2=2 x^{2}\left(x^{2}-4 y^{2}\right) .
$$

In order to solve this set $u=y^{2}$, so that $x^{2}=4-u$. The equation then becomes

$$
3(4-u) u-2 u^{2}+2=2(4-u)(4-u-4 u)
$$

or

$$
15 u^{2}-60 u-30=0
$$

It follows that $u^{2}-4 u+4=2$ or $u=2 \pm \sqrt{2}$ and $y= \pm \sqrt{2 \pm \sqrt{2}}$. In each of those cases we have $x^{2}=$ $4-u=2 \mp \sqrt{2}$ so we need to consider the eight points $\left(x_{0}, y_{0}\right)$ of the form $(\pm \sqrt{2-\sqrt{2}}, \pm \sqrt{2+\sqrt{2}})$ and $(\pm \sqrt{2+\sqrt{2}}, \pm \sqrt{2-\sqrt{2}})$. Now $f(x, y)=x\left(x^{2} y^{2}-2 y^{4}+2\right)$. In all cases we have $x_{0}^{2} y_{0}^{2}=$ $(2+\sqrt{2})(2-\sqrt{2})=2$ and $y_{0}^{2}=(2 \pm \sqrt{2})^{2}=4+2 \pm 4 \sqrt{2}=6 \pm 4 \sqrt{2}$. It follows that

$$
f\left(x_{0}, y_{0}\right)=x_{0}(4-6 \mp 4 \sqrt{2})= \pm 2 \sqrt{2 \mp \sqrt{2}}(\pm 2 \sqrt{2}+1)
$$

where the first sign is arbitrary and the next two are opposite. Numerical evaluation shows that the these points f takes the values $\approx \pm 5.8603$ and $\approx \pm 6.757$. It follows that the absolute maximum and minimum of f are $\pm 2 \sqrt{2+\sqrt{2}}(2 \sqrt{2}-1)$, attained at $(\pm \sqrt{2+\sqrt{2}}, \pm \sqrt{2-\sqrt{2}})$ (the sign on x_{0} determines if f is positive or negative, on y_{0} doesn't matter).

