MATH 253 – WORKSHEET 16 OPTIMIZATION

1. CRITICAL POINTS

1.1. Single-variable.

Definition 1. f(x) has a critical point at x_0 if $f'(x_0) = 0$. If, in addition, $f''(x_0) \neq 0$ call the point "ordinary", and (fact) if $f''(x_0) > 0$ we have a local minimum, if $f''(x_0) < 0$ a local maximum.

Given f(x) defined on [a, b] we find absolute minimum/maximum by (1) Finding the critical points in (a, b); (2) Evaluating f at every critical point and at the endpoints a, b; and (3) Selecting the smallest/largest value seen.

1.2. Two-variable.

Definition 2. f(x,y) has a critical point at (x_0, y_0) if $\vec{\nabla} f(x_0, y_0) = 0$. In that case set $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2$ (evaluated at (x_0, y_0)). If $D \neq 0$ call the point "ordinary", and further:

• If D < 0 we have a saddle point

• If D > 0, then $f_{xx} > 0$ at a local minimum, $f_{xx} < 0$ at a local maximum.

Minimum-finding: given f(x, y) defined on a region R, (1) find the critical points inside R (2) evaluate f on the boundary of R (3) select the smallest/largest value.

 $2. \ Problems$

(1) Let $f(x,y) = (2x - x^2)(2y - y^2)$. (a) Find and classify the critical points

(b) Find the absolute maximum and minimum in the domain $R = \{0 \le x \le 2, 0 \le y \le 2\} = [0, 2] \times [0, 2].$

Date: 16/10/2013.

(c) Find the absolute maximum and minimum in the domain $R = \{0 \le x \le 3, 0 \le y \le 2\} = [0,3] \times [0,2].$

(2) Find the equation of the plane which passes through (1, 2, 3) and encloses the smallest volume in the positive octant.