MATH 253 - WORKSHEET 16 OPTIMIZATION

1. CRITICAL POINTS

1.1. Single-variable.

Definition 1. $f(x)$ has a critical point at x_{0} if $f^{\prime}\left(x_{0}\right)=0$. If, in addition, $f^{\prime \prime}\left(x_{0}\right) \neq 0$ call the point "ordinary", and (fact) if $f^{\prime \prime}\left(x_{0}\right)>0$ we have a local minimum, if $f^{\prime \prime}\left(x_{0}\right)<0$ a local maximum.

Given $f(x)$ defined on $[a, b]$ we find absolute minimum/maximum by (1) Finding the critical points in $(a, b) ;(2)$ Evaluating f at every critical point and at the endpoints a, b; and (3) Selecting the smallest/largest value seen.

1.2. Two-variable.

Definition 2. $f(x, y)$ has a critical point at $\left(x_{0}, y_{0}\right)$ if $\vec{\nabla} f\left(x_{0}, y_{0}\right)=0$. In that case set $D=\left|\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right|=$ $f_{x x} f_{y y}-f_{x y}^{2}$ (evaluated at $\left.\left(x_{0}, y_{0}\right)\right)$. If $D \neq 0$ call the point "ordinary", and further:

- If $D<0$ we have a saddle point
- If $D>0$, then $f_{x x}>0$ at a local minimum, $f_{x x}<0$ at a local maximum.

Minimum-finding: given $f(x, y)$ defined on a region R, (1) find the critical points inside $R(2)$ evaluate f on the boundary of $R(3)$ select the smallest/largest value.

2. Problems

(1) Let $f(x, y)=\left(2 x-x^{2}\right)\left(2 y-y^{2}\right)$.
(a) Find and classify the critical points
(b) Find the absolute maximum and minimum in the domain $R=\{0 \leq x \leq 2,0 \leq y \leq 2\}=[0,2] \times$ [0, 2].

[^0](c) Find the absolute maximum and minimum in the domain $R=\{0 \leq x \leq 3,0 \leq y \leq 2\}=[0,3] \times$ [0, 2].
(2) Find the equation of the plane which passes through $(1,2,3)$ and encloses the smallest volume in the positive octant.

[^0]: Date: 16/10/2013.

