## MATH 253 - WORKSHEET 16 OPTIMIZATION

## 1. CRITICAL POINTS

### 1.1. Single-variable.

Definition 1. $f(x)$ has a critical point at $x_{0}$ if $f^{\prime}\left(x_{0}\right)=0$. If, in addition, $f^{\prime \prime}\left(x_{0}\right) \neq 0$ call the point "ordinary", and (fact) if $f^{\prime \prime}\left(x_{0}\right)>0$ we have a local minimum, if $f^{\prime \prime}\left(x_{0}\right)<0$ a local maximum.

Given $f(x)$ defined on $[a, b]$ we find absolute minimum/maximum by (1) Finding the critical points in $(a, b) ;(2)$ Evaluating $f$ at every critical point and at the endpoints $a, b$; and (3) Selecting the smallest/largest value seen.

### 1.2. Two-variable.

Definition 2. $f(x, y)$ has a critical point at $\left(x_{0}, y_{0}\right)$ if $\vec{\nabla} f\left(x_{0}, y_{0}\right)=0$. In that case set $D=\left|\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right|=$ $f_{x x} f_{y y}-f_{x y}^{2}$ (evaluated at $\left.\left(x_{0}, y_{0}\right)\right)$. If $D \neq 0$ the point "ordinary", and further:

- If $D<0$ we have a saddle point
- If $D>0$, then $f_{x x}>0$ at a local minimum, $f_{x x}<0$ at a local maximum.

Minimum-finding: given $f(x, y)$ defined on a region $R$, (1) find the critical points inside $R(2)$ evaluate $f$ on the boundary of $R(3)$ select the smallest/largest value.

## 2. Problems

(1) Let $f(x, y)=\left(2 x-x^{2}\right)\left(2 y-y^{2}\right)$.
(a) Find and classify the critical points

Solution: $\vec{\nabla} f=\left\langle(2-2 x)\left(2 y-y^{2}\right),\left(2 x-x^{2}\right)(2-2 y\rangle=2\langle(1-x) y(2-y),(2-x) x(1-y)\rangle\right.$. Thus $\frac{\partial f}{\partial x}=0$ if $x=1$ or $y=0$ or $y=2$. If $x=1$ then $\frac{\partial f}{\partial y}=2(1-y)$ so we have a critical point when $y=1$. If $y=0$ or 2 then $\frac{\partial f}{\partial y}= \pm 2(2-x) x$ and in either case we get a critical point of $x=0$ or $x=2$. To conclude, the critical points are $(1,1),(0,0),(0,2),(2,0),(2,2)$.
To classify them we calculate the second derivatives $f_{x x}=-2 y(2-y), f_{y y}=-2 x(2-x)$ and $f_{x y}=4(1-x)(1-y)$. Thus $D=f_{x x} f_{y y}-f_{x y}^{2}=4 x y(2-x)(2-y)-16(1-x)^{2}(1-y)^{2}$ and we

| Point | $D$ | $f_{x x}$ | type |
| :---: | :---: | :---: | :---: |
| $(1,1)$ | 4 | -2 | local max |
|  | have | -16 |  |
| saddle point |  |  |  |
|  | $(0,2)$ | -16 |  |
| saddle point |  |  |  |
| $(2,0)$ | -16 |  | saddle point |
| $(2,2)$ | -16 |  | saddle point |

(b) Find the absolute maximum and minimum in the domain $R=\{0 \leq x \leq 2,0 \leq y \leq 2\}=[0,2] \times$ $[0,2]$.
Solution: The only critical point in the domain is $(1,1)$ and $f(1,1)=1$. On the boundary we have either $x=0$ or $x=2$ or $y=0$ or $y=2$ and in any case $f(x, y)=0$. Thus the maximum is 1 and occurs at $(1,1)$, while the minimum is 0 and it occurs on the boundary.
(c) Find the absolute maximum and minimum in the domain $R=\{0 \leq x \leq 3,0 \leq y \leq 2\}=[0,3] \times$ $[0,2]$.
Solution: Again the only critical point inside the domain is $(1,1)$ where $f(1,1)=1$. On the boundary, if $x=0$ or $y=0$ or $y=2$ then $f(x, y)=0$ but when $x=3$ and $0 \leq y \leq 2$ we

[^0]have $f(3, y)=-3 y(2-y)=3 y^{2}-6 y$ which is non-positive on $[0,2]$ (both $y$ and $2-y$ are non-negative there). In particular, $f \leq 0$ on the boundary and the maximum is 1 at $(1,1)$ like before. Since $f(3, y)=3\left((y-1)^{2}-1\right)$ we see that the minimum on the boundary is -3 , occuring at $(3,1)$ and this is the absolute minimum.
(2) Find the equation of the plane which passes through $(1,2,3)$ and encloses the smallest volume in the positive octant.

Solution: Suppose the plane meets the $x, y, z$ axes at $a, b, c$ respectively ("parametrization" / "naming of variables" - we parametrize the plane by its axis intercepts, and will call them $a, b, c$ ). Then the volume of the resulting pyramid is $V=\frac{1}{2} a b c$ (it is $\left.\frac{1}{2}(\langle a, 0,0\rangle \times\langle 0, b, 0\rangle) \cdot(0,0, c)\right)$. Suppose the equation of the plane was $A x+B y+C z=1$. Plugging in the three points we see that $A=\frac{1}{a}$ and so on, so the equation is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. That the plane passes through $(1,2,3)$ then means $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1$. Then $\frac{1}{a}=1-\frac{2}{b}-\frac{3}{c}=\frac{b c-2 c-3 b}{b c}$ and hence

$$
a=\frac{b c}{b c-2 c-3 b}
$$

We thus have $V(b, c)=\frac{1}{2} \frac{b^{2} c^{2}}{b c-2 c-3 b}$. We look for critical points:

$$
\frac{\partial V}{\partial b}=\frac{2 b c^{2}(b c-2 c-3 b)-b^{2} c^{2}(c-3)}{2(b c-2 c-3 b)^{2}}=\frac{b c^{2}(b c-4 c-3 b)}{(b c-2 c-3 b)^{2}}
$$

and

$$
\frac{\partial V}{\partial c}=\frac{2 b^{2} c(b c-2 c-3 b)-b^{2} c^{2}(b-2)}{2(b c-2 c-3 b)^{2}}=\frac{b^{2} c(b c-2 c-6 b)}{2(b c-2 c-3 b)^{2}}
$$

Since $b, c \neq 0$ (the plane can't pass through the origin) this vanishes when

$$
\left\{\begin{array}{l}
b c-4 c-3 b=0 \\
b c-2 c-6 b=0
\end{array}\right.
$$

Subtracting the equations we find $-2 c+3 b=0$, so $c=\frac{3}{2} b$. Plugging back in we get $\frac{3}{2} b^{2}-6 b-3 b=0$ and since $b \neq 0$ we get $b=6$, hence $c=9$ and $a=3$ so the plane is $\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$ with the volume $\frac{1}{2} 3 \cdot 6 \cdot 9=81$.


[^0]:    Date: 16/10/2013.

