MATH 253 - WORKSHEET 13 DIRECTIONAL DERIVATIVES

(1) In each case find $\vec{\nabla} f$ and $D_{\vec{u}} f$ at the given point.
(a) $f(x, y)=x e^{y}$, at $(1,0)$ in the direction $\vec{u}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$.

Solution: $\vec{\nabla} f(x, y)=\left\langle e^{y}, x e^{y}\right\rangle$ so $\vec{\nabla} f(1,0)=\langle 1,1\rangle$ and

$$
\begin{aligned}
D_{\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle} f(1,0) & =\langle 1,1\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle \\
& =\frac{3}{5}-\frac{4}{5}=-\frac{1}{5}
\end{aligned}
$$

(b) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at $(1,2,3)$ in the direction $\vec{u}=\left\langle-\frac{6}{11}, \frac{7}{11}, \frac{6}{11}\right\rangle$.

Solution: $\vec{\nabla} f(x, y, z)=\langle 2 x, 2 y, 2 z\rangle$ so $\vec{\nabla} f(1,2,3)=2\langle 1,2,3\rangle$ and

$$
\begin{aligned}
D_{\left\langle-\frac{6}{11}, \frac{7}{11}, \frac{6}{11}\right\rangle} f(1,2,3) & =2\langle 1,2,3\rangle \cdot\left\langle-\frac{6}{11}, \frac{7}{11}, \frac{6}{11}\right\rangle \\
& =\frac{2}{11}\langle-6+14+18\rangle=\frac{52}{11}
\end{aligned}
$$

(c) $f(x, y)=\sqrt{x^{2}+y^{2}}+e^{x}$ at $(1,1)$ in the direction making an angle $\frac{\pi}{4}$ to the horizontal.

Solution: $\vec{\nabla} f(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}+e^{x}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$ so $\vec{\nabla} f(1,1)=\left\langle\frac{1}{\sqrt{2}}+e, \frac{1}{\sqrt{2}}\right\rangle$ and

$$
\begin{aligned}
D_{\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle} f(1,1) & =\left\langle\frac{1}{\sqrt{2}}+e, \frac{1}{\sqrt{2}}\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
& =\frac{1}{2}+\frac{e}{\sqrt{2}}+\frac{1}{2}=1+\frac{e}{\sqrt{2}}
\end{aligned}
$$

(2) You are driving your car towards the northeast at $72 \mathrm{~km} / \mathrm{h}$ along a terrain whose elevation at the point (x, y) is $\frac{1}{8+x^{2}+y^{2}}$ (all distances are measured in kilometres). What is your rate of ascent/descent when your car is at the location $(1,1)$? What about if the location was $(1,-1)$?

Solution 1: Let $f(x, y)=\frac{1}{8+x^{2}+y^{2}}$ and Let $\vec{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$, a unit vector in the northeast direction. Then the slope in the direction of travel is:

$$
(\vec{\nabla} f)(x, y) \cdot \vec{u}=\left\langle\frac{-2 x}{\left(8+x^{2}+y^{2}\right)^{2}}, \frac{-2 y}{\left(8+x^{2}+y^{2}\right)^{2}}\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
$$

which at $(1,1)$ is

$$
-\frac{1}{50 \sqrt{2}}\langle 1,1\rangle \cdot\langle 1,1\rangle=-\frac{1}{25 \sqrt{2}} .
$$

In other words, for every unit of horizontal distance in the direction of travel one would lose $\frac{1}{25 \sqrt{2}}$ units of elevation. We are travelling at $72 \mathrm{~km} / \mathrm{h}$ and are therefore losing altitude at the rate of $\frac{72}{25 \sqrt{2}}$ kilometers per hour, or $\frac{2 \sqrt{2}}{5} \frac{\mathrm{~m}}{\mathrm{~s}}$. If $(x, y)=(-1,1)$ then the directional derivative would have been $-\frac{1}{50 \sqrt{2}}\langle 1,-1\rangle \cdot\langle 1,1\rangle=0$, so the the car is momentarily level.
Solution 2: Let $\vec{v}=72\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$ be the velocity vector. Then the rate of change is $(\vec{\nabla} f)(x, y) \cdot \vec{v}=$ $-\frac{72}{25 \sqrt{2}}$. Similarly, $-\frac{1}{50}\langle 1,-1\rangle \cdot 72\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=0$.
(3) An ant is crawling along the curve $y=x^{2}$ at the rate of $v \mathrm{~cm} / \mathrm{s}$ (distances are measured in cm). The temperature in the $x y$ plane is varying according to $T(x, y)=\frac{y}{1+x^{2}}$. What is the rate of change of the temperature the ant sees when it is located at (x, y) ?

Solution 2: A tangent vector to the curve $y=x^{2}$ at (x, y) is given by $\langle 1,2 x\rangle$. A unit tangent vector is therefore $\vec{u}=\frac{1}{1+4 x^{2}}\langle 1,2 x\rangle$. The temperature gradient is

$$
\vec{\nabla} T(x, y)=\left\langle\frac{-2 x y}{\left(1+x^{2}\right)^{2}}, \frac{1}{1+x^{2}}\right\rangle
$$

so, per unit distance travelled, the ant sees a temperature change of

$$
\vec{\nabla} T \cdot \vec{u}=\frac{-2 x y+\left(1+x^{2}\right) 2 x}{\left(1+x^{2}\right)^{2}\left(1+4 x^{2}\right)}=\frac{2 x\left(1+x^{2}-y\right)}{\left(1+x^{2}\right)^{2}\left(1+4 x^{2}\right)} .
$$

Now the ant is travelling at the rate of v units of distance per unit time, so per unit time the temperature change is

$$
v \vec{\nabla} T \cdot \vec{u}=\frac{2 x\left(1+x^{2}-y\right)}{\left(1+x^{2}\right)^{2}\left(1+4 x^{2}\right)} v .
$$

