MATH 253 – WORKSHEET 13 THE CHAIN RULE

(1) Define z as a function of x, y as the solution to 2x + 3y - 4z - e^{xyz-1} = 0.
(a) Find ^{∂z}/_{∂x} and ^{∂z}/_{∂y}.

(b) Find the plane tangent to this surface at (1, 1, 1).

(c) Find an approximate solution to $\frac{5}{3} + \frac{7}{2} - 4z - e^{\frac{35}{36}z-1} = 0.$

1

Date: 4/10/2013.

(2) Suppose that $w = x^2 + yz - \ln(1+z)$, that x = st, that y = s + t and that $z = \frac{s}{t}$. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.

(3) Suppose that z is a function of x, y and that x, y are functions of r, θ according to $x = r \cos \theta$, $y = r \sin \theta$. Express $\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

(4) You are driving at a constant speed on a road that keeps a fixed compass direction as it goes over a hill. Say you position at time t is (1 - t, t), and hill is described by $z = e^{-x^2 - y^2}$. How fast is your elevation changing at time t? When is your elevation maximal? What is it then?