MATH 253 - WORKSHEET 13
 THE CHAIN RULE

(1) Define z as a function of x, y as the solution to $2 x+3 y-4 z-e^{x y z-1}=0$.
(a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(b) Find the plane tangent to this surface at $(1,1,1)$.
(c) Find an approximate solution to $\frac{5}{3}+\frac{7}{2}-4 z-e^{\frac{35}{36} z-1}=0$.
(2) Suppose that $w=x^{2}+y z-\ln (1+z)$, that $x=s t$, that $y=s+t$ and that $z=\frac{s}{t}$. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.
(3) Suppose that z is a function of x, y and that x, y are functions of r, θ according to $x=r \cos \theta$, $y=r \sin \theta$. Express $\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(4) You are driving at a constant speed on a road that keeps a fixed compass direction as it goes over a hill. Say you position at time t is $(1-t, t)$, and hill is described by $z=e^{-x^{2}-y^{2}}$. How fast is your elevation changing at time t ? When is your elevation maximal? What is it then?

