
MATH 253 � WORKSHEET 13

THE CHAIN RULE

(1) De�ne z as a function of x, y as the solution to 2x+ 3y − 4z − exyz−1 = 0.
(a) Find ∂z

∂x and ∂z
∂y .

Solution: We di�erentiate the equation to get 2− 4 ∂z∂x − yze
xyz−1− xyexyz−1 ∂z

∂x = 0 and solve
for zx to get

∂z

∂x
=

2− yzexyz−1

4 + xyexyz−1
.

Similarly, 3− 4 ∂z∂x − xze
xyz−1 − xyexyz−1 ∂z

∂y = 0 and hence

∂z

∂y
=

3− xzexyz−1

4 + xyexyz−1
.

Discussion: Let F (x, y, z) = 2x+3y−4z−exyz−1, and let z = z(x, y) be the function implicitely
de�ned by F = 0. Then the two-variable composite function (x, y) 7→ F (x, y, z(x, y)) is the
constant zero (that's how z(x, y) is de�ned!). Its derivatives are therefore zero. But we can also
calculate them using the chain rule:

∂F (x, y, z(x, y))
∂x

=
∂F

∂x
+
∂F

∂z

∂z

∂x
.

Since both methods for calculating the derivative must give the same answer (zero), we can
solve for zx:

zx = −Fx (x, y, z(x, y))
Fz (x, y, z(x, y))

.

(b) Find the plane tangent to this surface at (1, 1, 1).
Solution: We verify that (1, 1, 1) is on the surface: 2 · 1+3 · 1−4 · 1−e1 · 1 · 1−1 = 2+3−4−e0 = 0.
Now at (1, 1, 1) we have ∂z

∂x (1, 1) = 2−1 · 1 · e1 · 1 · 1−1

4+1 · 1 · e1 · 1 · 1−1 = 1
5 and ∂z

∂y (1, 1) = 3−1 · 1 · e1 · 1 · 1−1

4+1 · 1 · e1 · 1 · 1−1 = 2
5 . It

follows that the plane has the equation

z − 1 =
1
5
(x− 1) +

2
5
(y − 1)

or
5z − x− 2y = 2 .

(c) Find an approximate solution to 5
3 + 7

2 − 4z − e 35
36 z−1 = 0.

Solution: We recognize the equation as F
(

5
6 ,

7
6 , z

)
= 0, that is as the equation de�ning z

(
5
6 ,

7
6

)
.

We can approximate this value by a linear approximation about z (1, 1) (which we already know
from part (b)). The linear approximation is

z(x, y) ≈ 1 +
1
5

(x− 1) +
2
5

(y − 1) .

Plugging in x = 5
6 and y = 7

6 gives

z

(
5
6
,
7
6

)
≈ 1 +

1
5

(
5
6
− 1

)
+

2
5

(
7
6
− 1

)
= 1− 1

30
+

2
30

=
31
30
,

(2) Suppose that w = x2 + yz− ln (1 + z), that x = st, that y = s+ t and that z = s
t . Find

∂w
∂s and ∂w

∂t .
Solution: We have

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
= (2x)t+ z · 1 +

(
y − 1

1 + z

)
1
t

= 2st2 +
s

t
+

(
s+ t− t

s+ t

)
1
t
.
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Similarly,

∂w

∂s
= (2x)s+ z · 1 +

(
y − 1

1 + z

) (
− s

t2

)
= 2s2t+

s

t
−

(
s+ t− t

s+ t

)
s

t2
.

.
(3) Suppose that z is a function of x, y and that x, y are functions of r, θ according to x = r cos θ,

y = r sin θ. Express
(
∂z
∂r

)2
+ 1

r2

(
∂z
∂θ

)2
in terms of ∂z∂x and ∂z

∂y .

Solution: We have ∂z
∂r = ∂z

∂x
∂x
∂r + ∂z

∂y
∂y
∂r = ∂z

∂x cos θ + ∂z
∂y sin θ and ∂z

∂θ = ∂z
∂x

∂x
∂θ + ∂z

∂y
∂y
∂θ =

∂z
∂x (−r sin θ) + ∂z

∂y (r cos θ). It follows that(
∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

= (zx cos θ + zy sin θ)2 +
1
r2

[r (zy cos θ − zx sin θ)]2

= z2
x cos2 θ + z2

y sin2 θ + 2zxzy cos θ sin θ + z2
x sin2 θ + z2

y cos2 θ − 2zxzy cos θ sin θ

= z2
x

(
cos2 θ + sin2 θ

)
+ z2

y

(
cos2 θ + sin2 θ

)
= z2

x + z2
y .

(4) You are driving at a constant speed on a road that keeps a �xed compass direction as it goes over a

hill. Say you position at time t is (1− t, t), and hill is described by z = e−x
2−y2

. How fast is your
elevation changing at time t? When is your elevation maximal? What is it then?

Solution: Since ∂x∂t = −1, ∂y∂t = 1 we have ∂z∂t = −2xe−x
2−y2

(−1)−2ye−x
2−y2

(1) = 2 (x− y) e−x2−y2
,

that is
∂z

∂t
= 2 (1− 2t) e−(1+2t2−2t) .

This vanishes when x − y = 0 that is when 1 − 2t = 0 or t = 1
2 , at which point the elevation is

e−
1
22
− 1

22 = 1/
√
e.
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