MATH 253 - WORKSHEET 13 THE CHAIN RULE

(1) Define z as a function of x, y as the solution to $2 x+3 y-4 z-e^{x y z-1}=0$.
(a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Solution: We differentiate the equation to get $2-4 \frac{\partial z}{\partial x}-y z e^{x y z-1}-x y e^{x y z-1} \frac{\partial z}{\partial x}=0$ and solve for z_{x} to get

$$
\frac{\partial z}{\partial x}=\frac{2-y z e^{x y z-1}}{4+x y e^{x y z-1}}
$$

Similarly, $3-4 \frac{\partial z}{\partial x}-x z e^{x y z-1}-x y e^{x y z-1} \frac{\partial z}{\partial y}=0$ and hence

$$
\frac{\partial z}{\partial y}=\frac{3-x z e^{x y z-1}}{4+x y e^{x y z-1}}
$$

Discussion: Let $F(x, y, z)=2 x+3 y-4 z-e^{x y z-1}$, and let $z=z(x, y)$ be the function implicitely defined by $F=0$. Then the two-variable composite function $(x, y) \mapsto F(x, y, z(x, y))$ is the constant zero (that's how $z(x, y)$ is defined!). Its derivatives are therefore zero. But we can also calculate them using the chain rule:

$$
\frac{\partial F(x, y, z(x, y))}{\partial x}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} .
$$

Since both methods for calculating the derivative must give the same answer (zero), we can solve for z_{x} :

$$
z_{x}=-\frac{F_{x}(x, y, z(x, y))}{F_{z}(x, y, z(x, y))}
$$

(b) Find the plane tangent to this surface at $(1,1,1)$.

Solution: We verify that $(1,1,1)$ is on the surface: $2 \cdot 1+3 \cdot 1-4 \cdot 1-e^{1 \cdot 1 \cdot 1-1}=2+3-4-e^{0}=0$. Now at $(1,1,1)$ we have $\frac{\partial z}{\partial x}(1,1)=\frac{2-1 \cdot 1 \cdot e^{1 \cdot 1 \cdot 1-1}}{4+1 \cdot 1 \cdot e^{1 \cdot 1 \cdot 1-1}}=\frac{1}{5}$ and $\frac{\partial z}{\partial y}(1,1)=\frac{3-1 \cdot 1 \cdot e^{1 \cdot 1 \cdot 1-1}}{4+1 \cdot 1 \cdot e^{1 \cdot 1 \cdot 1-1}}=\frac{2}{5}$. It follows that the plane has the equation

$$
z-1=\frac{1}{5}(x-1)+\frac{2}{5}(y-1)
$$

or

$$
5 z-x-2 y=2
$$

(c) Find an approximate solution to $\frac{5}{3}+\frac{7}{2}-4 z-e^{\frac{35}{36} z-1}=0$.

Solution: We recognize the equation as $F\left(\frac{5}{6}, \frac{7}{6}, z\right)=0$, that is as the equation defining $z\left(\frac{5}{6}, \frac{7}{6}\right)$. We can approximate this value by a linear approximation about $z(1,1)$ (which we already know from part (b)). The linear approximation is

$$
z(x, y) \approx 1+\frac{1}{5}(x-1)+\frac{2}{5}(y-1)
$$

Plugging in $x=\frac{5}{6}$ and $y=\frac{7}{6}$ gives

$$
z\left(\frac{5}{6}, \frac{7}{6}\right) \approx 1+\frac{1}{5}\left(\frac{5}{6}-1\right)+\frac{2}{5}\left(\frac{7}{6}-1\right)=1-\frac{1}{30}+\frac{2}{30}=\frac{31}{30}
$$

(2) Suppose that $w=x^{2}+y z-\ln (1+z)$, that $x=s t$, that $y=s+t$ and that $z=\frac{s}{t}$. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.

Solution: We have

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}=(2 x) t+z \cdot 1+\left(y-\frac{1}{1+z}\right) \frac{1}{t}=2 s t^{2}+\frac{s}{t}+\left(s+t-\frac{t}{s+t}\right) \frac{1}{t}
$$

[^0]Similarly,

$$
\frac{\partial w}{\partial s}=(2 x) s+z \cdot 1+\left(y-\frac{1}{1+z}\right)\left(-\frac{s}{t^{2}}\right)=2 s^{2} t+\frac{s}{t}-\left(s+t-\frac{t}{s+t}\right) \frac{s}{t^{2}}
$$

(3) Suppose that z is a function of x, y and that x, y are functions of r, θ according to $x=r \cos \theta$, $y=r \sin \theta$. Express $\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Solution: We have $\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial z}{\partial x} \cos \theta+\frac{\partial z}{\partial y} \sin \theta$ and $\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}=$ $\frac{\partial z}{\partial x}(-r \sin \theta)+\frac{\partial z}{\partial y}(r \cos \theta)$. It follows that

$$
\begin{aligned}
\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2} & =\left(z_{x} \cos \theta+z_{y} \sin \theta\right)^{2}+\frac{1}{r^{2}}\left[r\left(z_{y} \cos \theta-z_{x} \sin \theta\right)\right]^{2} \\
& =z_{x}^{2} \cos ^{2} \theta+z_{y}^{2} \sin ^{2} \theta+2 z_{x} z_{y} \cos \theta \sin \theta+z_{x}^{2} \sin ^{2} \theta+z_{y}^{2} \cos ^{2} \theta-2 z_{x} z_{y} \cos \theta \sin \theta \\
& =z_{x}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+z_{y}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =z_{x}^{2}+z_{y}^{2}
\end{aligned}
$$

(4) You are driving at a constant speed on a road that keeps a fixed compass direction as it goes over a hill. Say you position at time t is $(1-t, t)$, and hill is described by $z=e^{-x^{2}-y^{2}}$. How fast is your elevation changing at time t ? When is your elevation maximal? What is it then?

Solution: Since $\frac{\partial x}{\partial t}=-1, \frac{\partial y}{\partial t}=1$ we have $\frac{\partial z}{\partial t}=-2 x e^{-x^{2}-y^{2}}(-1)-2 y e^{-x^{2}-y^{2}}(1)=2(x-y) e^{-x^{2}-y^{2}}$, that is

$$
\frac{\partial z}{\partial t}=2(1-2 t) e^{-\left(1+2 t^{2}-2 t\right)}
$$

This vanishes when $x-y=0$ that is when $1-2 t=0$ or $t=\frac{1}{2}$, at which point the elevation is $e^{-\frac{1}{2^{2}}-\frac{1}{2^{2}}}=1 / \sqrt{e}$.

[^0]: Date: 4/10/2013.

