MATH 253 - WORKSHEET 11
 LINEAR APPROXIMATION

Use a linear approximation to estimate
(1) e^{x-y} at $(0.1,0.1)$.

Solution: We will expand $f(x, y)=e^{x-y}$ about the point $(0,0)$. We have $f(0,0)=1, \frac{\partial f}{\partial x}(0,0)=$ $e^{x-y} \upharpoonright_{(0,0)}=1, \frac{\partial f}{\partial y}(0,0)=-e^{-x-y} \upharpoonright_{(0,0)}=-1$ so the linear approximation is $f(x, y) \approx 1+x-y$, and $f(0.1,0.1) \approx 1+0.1-0.1=1$.
Remark: From first year we know that, to first order, $e^{x} \approx 1+x, e^{-y} \approx 1-y$. Multiplying the two we get $e^{x-y} \approx(1+x)(1-y)=1+x-y-x y \approx 1+x-y$ to first order (i.e. neglecting the second-order term $x y$).
(2) The area of a triangle two of whose sides are 9.9 cm and 10.1 cm long and meet at an angle of 31°.

Solution: Say the sides have lengths a, b and the angle between them is θ. Then the area has the form

$$
A=\frac{1}{2} a b \sin \theta
$$

Now expand about $\left(10,10,30^{\circ}\right)$. We have $\frac{\partial A}{\partial a}=\frac{1}{2} b \sin \theta, \frac{\partial A}{\partial b}=\frac{1}{2} a \sin \theta, \frac{\partial A}{\partial \theta}=\frac{1}{2} a b \cos \theta$. Thus $A\left(10,10,30^{\circ}\right)=25, \frac{\partial A}{\partial a}\left(10,10,30^{\circ}\right)=\frac{5}{2}=\frac{\partial A}{\partial b}\left(10,10,30^{\circ}\right)$ and $\frac{\partial A}{\partial \theta}\left(10,10,30^{\circ}\right)=25 \sqrt{3}$ (since $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$). The linear approximation is then

$$
A\left(9.9,10.1,31^{\circ}\right) \approx 25+\frac{5}{2} \Delta x+\frac{5}{2} \Delta y+25 \sqrt{3} \Delta \theta
$$

where $\Delta x=9.9-10=-0.1, \Delta y=10.1-10=0.1$ and $\Delta \theta=1^{\circ}=\frac{\pi}{180} \mathrm{rad}$ (note that $\frac{d \sin \theta}{d \theta}=\cos \theta$ only if θ is measured in radians!). The final answer is therefore

$$
\begin{aligned}
A & \approx 25-\frac{5}{20}+\frac{5}{20}+\frac{25 \sqrt{3} \pi}{180} \\
& =25+\frac{5 \sqrt{3} \pi}{36} \\
& \approx \text { (with a calculator) } 25+0.756
\end{aligned}
$$

(3) An equilateral triangle has sides of length 10 cm (to within 1 mm) and the angle between those sides is 150° (to within 1°). What is the area of the triangle? Estimate the maximum error in your calculation.

Solution: As in the previous problem we have $d A=\left(\frac{1}{2} b \sin \theta\right) d x+\left(\frac{1}{2} a \sin \theta\right) d y+\left(\frac{1}{2} a b \cos \theta\right) d \theta$. Plugging in the values for a, b, θ and $\Delta x, \Delta y, \Delta \theta$ the error estimate is

$$
\begin{aligned}
|\Delta A| & \lesssim\left|\frac{5}{2} \cdot 0.1\right|+\left|\frac{5}{2} \cdot 0.1\right|+\left|(-25 \sqrt{3}) \cdot \frac{\pi}{180}\right| \\
& =\frac{1}{2}+\frac{5 \sqrt{3} \pi}{36} \approx 1.256
\end{aligned}
$$

[^0](4) Two planes tangent to the surface $z=1-x^{2}-y^{2}$ meet the x-axis at $\frac{21}{16}$ and the y-axis at $\frac{21}{8}$. What are they? Where are the points of tangency?

Solution:

(a) Interpretation: we are given the surface $z=1-x^{2}-y^{2}$, and need to find planes which are (1) tangent to the surface (2) pass through $\left(\frac{21}{16}, 0,0\right)$ and $\left(0, \frac{21}{8}, 0\right)$.
(b) Parametrization: Our unknowns will be a, b such that $\left(a, b, 1-a^{2}-b^{2}\right)$ is the point of tangency of the plane to the curve.
(c) Interpretation II: We implement condition (1) by finding the tangent plane at this point. The partial derivatives are $\frac{\partial z}{\partial x}(a, b)=-2 x \upharpoonright_{(a, b)}=-2 a, \frac{\partial z}{\partial y} \upharpoonright_{(a, b)}=-2 y \upharpoonright_{(a, b)}=-2 b$ so the equation of the tangent plane is

$$
z-\left(1-a^{2}-b^{2}\right)=(-2 a)(x-a)+(-2 b)(y-b)
$$

or equivalently

$$
z+2 a x+2 b y=1-a^{2}-b^{2}+2 a^{2}+2 b^{2}
$$

that is

$$
z+2(a x+b y)=1+a^{2}+b^{2}
$$

We implement condition (2) by insisting that this plane passes through $\left(\frac{21}{16}, 0,0\right)$ and $\left(0, \frac{21}{8}, 0\right)$, that is that

$$
\left\{\begin{array}{l}
0+2\left(a \frac{21}{16}+0\right)=1+a^{2}+b^{2} \\
0+2\left(0+b \frac{21}{8}\right)=1+a^{2}+b^{2}
\end{array}\right.
$$

so, conditions (1),(2) amount to the system of equations

$$
\left\{\begin{array}{l}
\frac{21}{8} a=1+a^{2}+b^{2} \\
\frac{21}{4} b=1+a^{2}+b^{2}
\end{array} .\right.
$$

(d) Solving the equations: Combining the equations we find $\frac{21}{8} a=\frac{21}{4} b$ so $a=2 b$. Plugging into the second equation we find

$$
\frac{21}{4} b=1+(2 b)^{2}+b^{2}
$$

that is

$$
5 b^{2}-\frac{21}{4} b+1=0
$$

It follows that

$$
\begin{aligned}
b & =\frac{\frac{21}{4} \pm \sqrt{\frac{441}{16}-20}}{10} \\
& =\frac{21}{40} \pm \frac{1}{40} \sqrt{441-16 \cdot 20} \\
& =\frac{21}{40} \pm \frac{\sqrt{121}}{40} \\
& =\frac{21 \pm 11}{40}
\end{aligned}
$$

In other words, the two solutions are $b=\frac{32}{40}=\frac{4}{5}, a=\frac{8}{5}$ and $b=\frac{10}{40}=\frac{1}{4}, a=\frac{1}{2}$.
(e) Endgame:
(i) At the point of tangency $\left(\frac{8}{5}, \frac{4}{5}, 1-\frac{16+64}{25}\right)$ we have the plane $z+\frac{16}{5} x+\frac{8}{5} y=\frac{105}{25}=\frac{21}{5}$.
(ii) At the point of tangency $\left(\frac{1}{4}, \frac{1}{2}, 1-\frac{1}{16}+\frac{1}{4}\right)$ we have the plane $z+\frac{1}{2} x+y=\frac{21}{16}$.

[^0]: Date: 30/9/2013.

