MATH 253 - WORKSHEET 10
 TANGENT PLANES

Find the equation of the plane tangent to the following surfaces at the following points:
(1) $z=e^{-x^{2}-y^{2}}$ at $(0,0,1)$.

Solution: $\frac{\partial z}{\partial x}=-2 x e^{-x^{2}-y^{2}}, \frac{\partial z}{\partial y}=-2 y e^{-x^{2}-y^{2}}, \frac{\partial z}{\partial x}(0,0)=0, \frac{\partial z}{\partial y}(0,0)=0$, and the equation is $z=1$.
(2) $z=e^{-x^{2}-y^{2}}$ at $\left(1,1, e^{-2}\right)$.

Solution: Now $\frac{\partial z}{\partial x}(1,1)=-2 e^{-2}, \frac{\partial z}{\partial y}(1,1)=-2 e^{-2}$, and the equation is

$$
z-e^{-2}=-2 e^{-2}(x-1)-2 e^{-2}(y-1)
$$

which we can rearrange to

$$
2 x+2 y+e^{2} z=5
$$

(3) Two planes tangent to the surface $z=1-x^{2}-y^{2}$ meet the x-axis at $\frac{21}{16}$ and the y-axis at $\frac{21}{8}$. What are they? Where are the points of tangency?

Solution: Suppose the point of tangency is $\left(x_{0}, y_{0}, z_{0}\right)$. The equation of the tangent plane is

$$
z=z_{0}-2 x_{0}\left(x-x_{0}\right)-2 y_{0}\left(y-y_{0}\right)
$$

that is

$$
\begin{aligned}
2 x_{0} x+2 y_{0} y+z & =1-x_{0}^{2}-y_{0}^{2}+2 x_{0}^{2}+2 y_{0}^{2} \\
& =1+x_{0}^{2}+y_{0}^{2} .
\end{aligned}
$$

We are given that this plane contains $\left(\frac{21}{16}, 0,0\right)$ and $\left(0, \frac{21}{8}, 0\right)$, that is that:

$$
\left\{\begin{array}{l}
2 x_{0} \frac{21}{16}=1+x_{0}^{2}+y_{0}^{2} \\
2 y_{0} \frac{21}{8}=1+x_{0}^{2}+y_{0}^{2}
\end{array} .\right.
$$

In particular we have $\frac{21}{8} x_{0}=\frac{21}{4} y_{0}$ so $x_{0}=2 y_{0}$. Plugging into the first equation we find $\frac{21}{4} y_{0}=1+5 y_{0}^{2}$, that is

$$
5 y_{0}^{2}-\frac{21}{4} y_{0}+1=0
$$

By the quadratic formula,

$$
y_{0}=\frac{\frac{21}{4} \pm \sqrt{\frac{21^{2}}{4^{2}}-20}}{10}=\frac{21 \pm \sqrt{441-16 \cdot 20}}{40}=\frac{21 \pm \sqrt{121}}{40}=\frac{21 \pm 11}{40}
$$

so the two possibilities are $y_{0}=\frac{32}{40}=\frac{4}{5}$ and $y_{0}=\frac{10}{40}=\frac{1}{4}$. The points of tangency are therefore $\left(\frac{8}{5}, \frac{4}{5},-\frac{11}{5}\right)$ where the plane is $\frac{16}{5} x+\frac{8}{5} y+z=\frac{21}{5}$ or $16 x+8 y+5 z=21$ and $\left(\frac{1}{2}, \frac{1}{4}, \frac{11}{16}\right)$ where the plane is $x+\frac{1}{2} y+z=\frac{21}{16}$.

