MATH 253 - WORKSHEET 9
 PARTIAL DERIVATIVES

1. A TRIANGLE PROBLEM

A triangle has sides a, b, c and angle θ between the sides of length a, b. The law of cosines reads

(1) Considering θ as a function of a, b, c find $\frac{\partial \theta}{\partial c}$.
(2) Supposing that $b>c$, find a such that θ is largest.

2. The wave equation

Consider the equation ("wave equation")

$$
u_{t t}=c^{2} u_{x x}
$$

(1) Check that $u(t ; x)=\sin (x-c t)$ is a solution.
(2) Let f be any function, and suppose that $u(t ; x)=f(x-v t)$ is a solution (such a solution is travelling at speed v). What is v ?

