MATH 253 - WORKSHEET 8 PARTIAL DERIVATIVES

1. Differentiate the following functions

(1) $f(x, y)=\frac{y}{x^{2}+y^{2}}$
(a) $f_{x}=\frac{\partial}{\partial x}\left(\frac{y}{x^{2}+y^{2}}\right) \stackrel{\mathrm{y} \text { is const }}{=} y \frac{\partial}{\partial x}\left(\frac{1}{x^{2}+y^{2}}\right) \stackrel{\text { quot rule }}{=} y \frac{-2 x}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$
(b) $f_{y}=\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right) \stackrel{\text { quot rule }}{=} \frac{\left(\frac{\partial}{\partial y} y\right)\left(x^{2}+y^{2}\right)-y \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
(2) Let $z=\sqrt{1-x^{2}-y^{2}}$.
(a) $\frac{\partial z}{\partial x} \stackrel{\text { chain rule }}{=} \frac{\frac{\partial}{2}\left(1-x^{2}-y^{2}\right)}{\sqrt{1-x^{2}-y^{2}}}=-\frac{x}{\sqrt{1-x^{2}-y^{2}}}$
(b) Use $\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)=\frac{\partial}{\partial x}(1)=0$ to find $\frac{\partial z}{\partial x}$ a different way:

Solution: $0=\frac{\partial}{\partial x}(1)=\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)=2 x+0+2 z \cdot \frac{\partial z}{\partial x}$ (explanation: when we take the partial derivative by x, we have $\frac{\partial}{\partial x} x^{2}=2 x$, we have that y is constant, and we differentiate z using the chain rule, noting that z depends on x). Solving the equation for $\frac{\partial z}{\partial x}$ we have

$$
\frac{\partial z}{\partial x}=-\frac{2 x}{2 z}=-\frac{x}{z}=-\frac{x}{\sqrt{1-x^{2}-y^{2}}} .
$$

(3) $g(x, y)=\ln \left(x^{2}+y^{2}\right)$
(a) $g_{x}=\frac{2 x}{x^{2}+y^{2}}$ and by symmetry $g_{y}=\frac{2 y}{x^{2}+y^{2}}$.
(b) $g_{x x}=\frac{2\left(x^{2}+y^{2}\right)-2 x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=2 \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ while $g_{x y}=2 x \cdot \frac{-2 y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}$.
(c) $g_{y x}=-\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}$ by problem 1(a) while $g_{y y}=2 \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ by symmetry (reverse the roles of x, y in part (b)).
(d) $\Delta g=g_{x x}+g_{y y}=0$.

Remark. $g(x, y)$ is the electric potential in two dimensions.

[^0]
[^0]: Date: 23/9/2013.

