MATH 253 - WORKSHEET 4 EQUATIONS OF LINES AND PLANES

Reminder: $\vec{C}=\vec{A} \times \vec{B}$ has magnitude $|\vec{C}|=|\vec{A}||\vec{B}| \sin \theta$, direction perpendicular to \vec{A}, \vec{B} so that the $\vec{A}, \vec{B}, \vec{C}$ is right-handed in that order. In coordinates

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \times\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left|\begin{array}{ccc}
\vec{i} & j & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

1. Working on a Planes
(1) We will find a unit vector normal to the plane passing through the points $(3,0,0),(0,2,0),(0,0,4)$. $($ normal $=$ perpendicular; unit $=$ magnitude 1$)$
(a) Find two vectors parallel to the plane:
(b) Find their cross product $\vec{A} \times \vec{B}=$
(c) Normalize to obtain a unit vector
[^0]
2. Lines and PLanes

(1) Find equations for the line through $(2,0,3),(3,4,0)$.
(2) Find an equation for the plane passing through $(3,0,0),(0,2,0),(0,0,4)$.

[^0]: Date: 11/9/2013.

