MATH 253 - WORKSHEET 4 EQUATIONS OF LINES AND PLANES

Reminder: $\vec{C}=\vec{A} \times \vec{B}$ has magnitude $|\vec{C}|=|\vec{A}||\vec{B}| \sin \theta$, direction perpendicular to \vec{A}, \vec{B} so that the $\vec{A}, \vec{B}, \vec{C}$ is right-handed in that order. In coordinates

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \times\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left|\begin{array}{ccc}
\vec{i} & j & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

1. Working on a planes

(1) We will find a unit vector normal to the plane passing through the points $(3,0,0),(0,2,0),(0,0,4)$. $($ normal $=$ perpendicular; unit $=$ magnitude 1$)$
(a) Find two vectors parallel to the plane:

Solution: (there are many)
$\vec{A}=(0,0,4)-(3,0,0)=\langle-3,0,4\rangle, \vec{B}=(0,2,0)-(3,0,0)=\langle-3,2,0\rangle$.
(b) Find their cross product

Solution: $\vec{A} \times \vec{B}=\langle 0 \cdot 0-4 \cdot 2,4 \cdot(-3)-(-3) \cdot 0,(-3) \cdot 2-0 \cdot(-3)\rangle=-\langle 8,12,6\rangle=(-2)\langle 4,6,3\rangle$.
(c) Normalize to obtain a unit vector.

Solution: We first rescale by (-2) and the divide by the norm $\sqrt{4^{2}+6^{2}+3^{2}}=\sqrt{61}$ to find the vector $\frac{1}{\sqrt{61}}\langle 4,6,3\rangle$.

2. Lines and PLanes

(1) Find equations for the line through $(2,0,3),(3,4,0)$.

Solution: The vector $\vec{v}=\langle 1,4,-3\rangle$ is parallel to the line, so the equations are

$$
\frac{x-2}{1}=\frac{y}{4}=\frac{z-3}{-3}
$$

or, equivalently

$$
\left\{\begin{array}{l}
y=4 x-8 \\
z=-3 x+9
\end{array}\right.
$$

(2) Find an equation for the plane passing through $(3,0,0),(0,2,0),(0,0,4)$.

Solution 1: In a previous problem we found that $\vec{N}=\langle 4,6,3\rangle$ is normal to this plane. It follows that a general point (x, y, z) on the plane satisfies

$$
\langle x-3, y-0, z-0\rangle \cdot\langle 4,6,3\rangle=0
$$

or equivalently, that

$$
4 x+6 y+3 z=12 .
$$

Solution 2: (Brute force) We need numbers a, b, c, d such that for every point in the plane, $a x+b y+c z=d$. Guessing that $d \neq 0$, we could divide the equation by d, so it is enough to find a, b, c such that

$$
a x+b y+c z=1
$$

for the whole plane, and in particular for the three given points. So we must have

$$
\left\{\begin{array}{l}
a \cdot 3+b \cdot 0+c \cdot 0=1 \\
a \cdot 0+b \cdot 2+c \cdot 0=1 \\
a \cdot 0+b \cdot 0+c \cdot 4=1
\end{array}\right.
$$

Date: 11/9/2013.

This is an easy 3×3 system (in general it would be harder), and has the solution

$$
a=\frac{1}{3} ; \quad b=\frac{1}{2} ; \quad c=\frac{1}{4}
$$

and we get the equation

$$
\frac{1}{3} x+\frac{1}{2} y+\frac{1}{4} z=1
$$

(which is the same as the one from the previous solution up to an overall factor of 12).

