MATH 253 - PROJECTIONS

LIOR SILBERMAN, UBC

THE THREE DEFINITIONS

Suppose we have a vector \vec{w} we'd like to project along a vector \vec{v} . In other words, we'd like to find the component of \vec{w} in the direction of \vec{v} . We then defined three quantities:

(1) The "scalar projection of \vec{w} along \vec{v} " is the number

$$\frac{\vec{w}\cdot\vec{v}}{|\vec{v}|} = \vec{w}\cdot\left(\frac{1}{|\vec{v}|}\vec{v}\right)\,.$$

It measures the *magnitude* of the component of \vec{w} along \vec{v} , and ought to be called that.

(2) The "vector projection of \vec{w} along \vec{v} " is the vector

$$\frac{\vec{w}\cdot\vec{v}}{\left|\vec{v}\right|}\cdot\frac{\vec{v}}{\left|\vec{v}\right|} = \left(\frac{\vec{w}\cdot\vec{v}}{\left|\vec{v}\right|^2}\right)\vec{v}\,,$$

having magnitude as in (1) and direction along \vec{v} . We will also call it "the component of \vec{w} along \vec{v} " or "the component of \vec{w} in the direction of \vec{v} ".

(3) The misnamed "orthogonal projection", that being the remainder vector

$$\vec{w} - \left(\frac{\vec{w} \cdot \vec{v}}{\left|\vec{v}\right|^2}\right) \vec{v}.$$

[please don't use this term outside this course; you should really call it "the component of \vec{w} orthogonal to \vec{v} "].

SIDE CALCULATIONS

We also did in class a little calculation, to verify that what we just called "the component orthogonal to \vec{v} " really is orthogonal to \vec{v} :

$$\begin{bmatrix} \vec{w} - \left(\frac{\vec{w} \cdot \vec{v}}{\left|\vec{v}\right|^2}\right) \vec{v} \end{bmatrix} \cdot \vec{v} = \vec{w} \cdot \vec{v} - \left(\frac{\vec{w} \cdot \vec{v}}{\left|\vec{v}\right|^2}\right) (\vec{v} \cdot \vec{v})$$
$$= \vec{w} \cdot \vec{v} - \left(\frac{\vec{w} \cdot \vec{v}}{\left|\vec{v}\right|^2}\right) |\vec{v}|^2$$
$$= 0$$

where in the second line we used that $\vec{v} \cdot \vec{v} = |\vec{v}|^2$.

Finally, one can do the calculation to check that "the component of \vec{w} along \vec{v} " and "the component of \vec{w} orthogonal to \vec{v} " together add up to \vec{w} :

$$\left(\frac{\vec{w}\cdot\vec{v}}{|\vec{v}|^2}\right)\vec{v} + \left[\vec{w} - \left(\frac{\vec{w}\cdot\vec{v}}{|\vec{v}|^2}\right)\vec{v}\right] = \vec{w} + \left[\left(\frac{\vec{w}\cdot\vec{v}}{|\vec{v}|^2}\right)\vec{v} - \left(\frac{\vec{w}\cdot\vec{v}}{|\vec{v}|^2}\right)\vec{v}\right] = \vec{w}.$$

Date: 9/9/2013.

Geometric Picture

To see what decomposing a vector into components along and orthogonal to another vector, see the following picture:

Here the vector \vec{a} is projected along the vector \vec{b} . $\vec{a_1}$ is the component along \vec{b} , $\vec{a_2}$ is the component orthogonal to \vec{b} .

⁽Image credit: user Paolo.dL on Wikipedia; see http://en.wikipedia.org/wiki/File:Projection_ and_rejection.png. Accordingly, this PDF is published under the CC Attribution-ShareAlike-Unported 3.0 license)