MATH 253 - PROJECTIONS

LIOR SILBERMAN, UBC

The three definitions

Suppose we have a vector \vec{w} we'd like to project along a vector \vec{v}. In other words, we'd like to find the component of \vec{w} in the direction of \vec{v}. We then defined three quantities:
(1) The "scalar projection of \vec{w} along \vec{v} " is the number

$$
\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|}=\vec{w} \cdot\left(\frac{1}{|\vec{v}|} \vec{v}\right) .
$$

It measures the magnitude of the component of \vec{w} along \vec{v}, and ought to be called that.
(2) The "vector projection of \vec{w} along \vec{v} " is the vector

$$
\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|} \cdot \frac{\vec{v}}{|\vec{v}|}=\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}
$$

having magnitude as in (1) and direction along \vec{v}. We will also call it "the component of \vec{w} along \vec{v} " or "the component of \vec{w} in the direction of \vec{v} ".
(3) The misnamed "orthogonal projection", that being the remainder vector

$$
\vec{w}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}
$$

[please don't use this term outside this course; you should really call it "the component of \vec{w} orthogonal to $\left.\vec{v}{ }^{\prime}\right]$.

Side Calculations

We also did in class a little calculation, to verify that what we just called "the component orthogonal to \vec{v} really is orthogonal to \vec{v} :

$$
\begin{aligned}
{\left[\vec{w}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}\right] \cdot \vec{v} } & =\vec{w} \cdot \vec{v}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right)(\vec{v} \cdot \vec{v}) \\
& =\vec{w} \cdot \vec{v}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right)|\vec{v}|^{2} \\
& =0
\end{aligned}
$$

where in the second line we used that $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$.
Finally, one can do the calculation to check that "the component of \vec{w} along \vec{v} " and "the component of \vec{w} orthogonal to \vec{v} together add up to \vec{w} :

$$
\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}+\left[\vec{w}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}\right]=\vec{w}+\left[\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}-\left(\frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}\right]=\vec{w} .
$$

Geometric Picture

To see what decomposing a vector into components along and orthogonal to another vector, see the following picture:

Here the vector \vec{a} is projected along the vector \vec{b}. \vec{a}_{1} is the component along \vec{b}, \vec{a}_{2} is the component orthogonal to \vec{b}.
(Image credit: user Paolo.dL on Wikipedia; see http://en.wikipedia.org/wiki/File:Projection_ and_rejection.png. Accordingly, this PDF is published under the CC Attribution-ShareAlike-Unported 3.0 license)

