MATH 253 - COMMON ERRORS IN THE FIRST MIDTERM EXAM

LIOR SILBERMAN, UBC

1. Q1: Partial Differentiation

- When differentiating $f(x, y)=x^{2} \int_{0}^{y} \sin ^{8}(\sqrt{t}) \mathrm{d} t$
- This is a product of x^{2} (a function of x along) and $\int_{0}^{y} \sin ^{8}(\sqrt{t}) \mathrm{d} t$ (a function of y alone). So when we differentiate with respect to x we get $2 x \int_{0}^{y} \sin ^{8}(\sqrt{t}) \mathrm{d} t$. Writing $2 x \sin ^{8}(\sqrt{y})$ is a clear error.
- When differentiating with respect to y, a common confusion was to differentiate $\sin ^{8}(\sqrt{t})$ with respect to t. The function of y is actually the integral, and the fundamental theorem of calculus says $\frac{d}{d y} \int_{0}^{y} F(t) d t=F(y)$, not $\frac{d}{d y} \int_{0}^{y} F(t) d t=F^{\prime}(y)!$.
- When differentiating $z+e^{z}=x^{2}+y^{2}$.
- You can't solve for z ! Writing $z=x^{2}+y^{2}-e^{z}$ doesn't help because there's an e^{z} on the RHS.
- After you get $z_{x}=\frac{2 x}{1+e^{z}}$ you want to differetiate wrt y. It's true that $2 x$ is constant for that, but $\frac{1}{1+e^{z}}$ isn't $-z$ still depends on y ! thus the derivative is

$$
\begin{aligned}
\frac{\partial}{\partial y} \frac{\partial z}{\partial x} & = \\
& \frac{\partial}{\partial y} \frac{2 x}{1+e^{z}} \stackrel{\text { chain rule }}{=} 2 x \cdot\left(-\left(1+e^{z}\right)^{-2}\right) \frac{\partial e^{z}}{\partial y} \\
& \stackrel{\text { chain rule }}{=} \\
& -\frac{2 x}{\left(1+e^{z}\right)^{2}} e^{z} \frac{\partial z}{\partial y} \\
& \stackrel{\text { done before }}{=} \\
& -\frac{2 x}{\left(1+e^{z}\right)^{2}} e^{z} \frac{2 y}{\left(1+e^{z}\right)}=-\frac{4 x y e^{z}}{\left(1+e^{z}\right)^{3}}
\end{aligned}
$$

2. Q3: Tangent planes and linear approximation

- Some people still used the (incorrect) non-linear approximation $f\left(x_{0}, y_{0}\right)+f_{x}(x, y)\left(x-x_{0}\right)+$ $f_{y}(x, y)\left(x-x_{0}\right)$ instead of the correct linear approximation

$$
f(x, y) \approx f_{x}\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
$$

Note that writing the first approximation as $f\left(x_{0}, y_{0}\right)+f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y$ and then plugging in $\left(x_{0}, y_{0}\right)$ for (x, y) and some value of $\Delta x, \Delta y$ accidentally gives the right value for the linear approximation, but makes no sense.

3. Q4: Geometry

- The line through the points D, E has the parametrization $D+t \overrightarrow{D E}$. If $\overrightarrow{D E}=\langle a, b, c\rangle$ then a geometric object with the equation $a x+b y+c z=d$ is a plane perpendicular to $\overrightarrow{D E}$, not a line.
- On the angle between a line and a plane.
- The angle between a line and a plane is not the same as the angle between the line and any vector in the plane - for different vectors in the plane you will get different angles.
- We defined angles between lines to be acute. So if you find that the angle is $\cos ^{-1}\left(-\frac{1}{2}\right)$ you should have reversed one of your vectors and obtained the angle $\cos ^{-1}\left(\frac{1}{2}\right)$ instead.
- The angle between the line and the vector normal to the plane is not the same as the angle with the plane - in fact the two angles add to $\frac{\pi}{2}$.

