Math 538: Problem Set 5 (optional)

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Examples are important.

Problems

1. (Discriminants)
(a) Let $f(x)=x^{n}+b$. Show that $D(f)=(-1)^{\frac{n(n=1)}{2}} n^{n} b^{n-1}$.
(b) Let $f(x)=g(x) \cdot(x-\alpha)$ for some polynomial $g(x)$. Show that $D(f)=D(g) g(\alpha)^{2}=$ $D(g)\left(f^{\prime}(\alpha)\right)^{2}$.
(c) Let $f(x)=x^{n}+a x+b$. Show that $(-1)^{\frac{n(n-1)}{2}} D(f)=(-1)^{(n-1)}(n-1)^{(n-1)} a^{n}+n^{n} b^{n-1}$.
(d) Let $f(x)=x^{2 n}+a x^{2}+b$. Find the discriminant of f.
2. (The discriminant of cyclotomic fields) For an integer n write $K_{n}=\mathbb{Q}\left(\zeta_{n}\right) . p$ always denotes a prime number.
(a) Show that the discriminant of K_{p} is $(-1)^{\phi(p) / 2} p^{p-1}$.
(b) Show that the discrimimant of $K_{p^{k}}$ is $\pm p^{(k p-k-1) p^{k-1}}$.
(c) Let $p^{k} \| n$. We have seen in class that the extension $K_{n}: K_{p^{k}}$ is unramified at p. Use this to calculate the p-part of the discriminant of K_{n} and conclude that this discriminant is

$$
\pm \frac{n^{\phi(n)}}{\prod_{p \mid n} p^{\phi(n) /(p-1)}}
$$

(d) Show that $\mathbb{Q}\left(\zeta_{n}\right) \simeq \mathbb{Q}\left(\zeta_{m}\right)$ as fields iff $n=m$ or $n=2 m$ with m odd or $m=2 n$ with n odd.
3. (The unit Theorem) Call a triangle almost equilateral if is not equilateral, but its sides are integers and any two differ by at most 1 . Show that there are infinitey many almost equilateral triangles with integral area.

The class number

4. (Another proof that the class group is finite) Let K be a number field, $[K: \mathbb{Q}]=n$, and fix an integral basis $\left\{\omega_{i}\right\}_{i=1}^{n} \subset \mathcal{O}_{K}$.
(a) Let $\mathfrak{a} \triangleleft \mathcal{O}_{K}$ be non-zero, let $N=\left[\mathcal{O}_{K}: \mathfrak{a}\right]=N_{\mathbb{Q}}^{K} \mathfrak{a}$ and let $A=\left\{\sum_{i=1}^{n} a_{i} \omega_{i} \mid a_{i} \in \mathbb{Z} \cap\left[0, N^{1 / n}+1\right]\right\}$. Show that there are distinct $\alpha, \beta \in A$ such that $\gamma=\alpha-\beta \in \mathfrak{a}$.
(b) Show that that there is a constant C, depending only on the choice of the ω_{i}, such that $\left|N_{\mathbb{Q}}^{K} \gamma\right| \leq C \cdot N$.
(c) Defining \mathfrak{b} by $(\gamma)=\mathfrak{a b}$ show that $N_{\mathbb{Q}}^{K} \mathfrak{b} \leq C$.
(d) Conclude that $\mathrm{Cl}(K)$ is finite.
5. Suppose that the class group is represented by ideals all of whom have norm at most C^{\prime}. Show that the class group is generated by the prime ideals of norm at most C^{\prime}. In particular, $h_{K}=1$ iff the primes of norm at most C^{\prime} are principal.
6. Find repesentatives for the ideal classes of (a) $\mathbb{Q}(\sqrt{-5})$, (b) $\mathbb{Q}(\sqrt{-11})$, (c) $\mathbb{Q}(\sqrt{23})$, (d) $\mathbb{Q}(\sqrt[3]{2})$. What is the class number?

Quintic examples

7. (Artin) Let $f(x)=x^{5}-x+1$ and let $K=\mathbb{Q}(\alpha)$ where α is a root of f.
(a) Show that $D(f)=19 \cdot 151$ and conclude that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(b) Suppose that f was reducible. Show that f would have an irreducible quadratic factor, and hence a root α such that $\mathbb{Q}(\alpha)$ is a quadratic field $\mathbb{Q}(\sqrt{d})$.
(c) By considering ramification show that in (c) we must have $d=-19$ or $d=-151$ or $d=19 \cdot 151$.
(d) Show that f has a unique real root and use this to rule out $d=19 \cdot 151$.
(e) Show that every root of f is a unit and use this to rule out $d=-19$ and $d=-151$.
(f) (Alternative route) Show that the images of f are irreducible in $(\mathbb{Z} / 2 \mathbb{Z})[x]$ and $(\mathbb{Z} / 3 \mathbb{Z})[x]$.
8. Continuing with the field K from the previous problem.
(a) Show that K has one real place and two complex places.
(b) Show that every ideal class in \mathcal{O}_{K} has a representative of norm at most $\frac{5!}{5^{5}}\left(\frac{4}{\pi}\right)^{2} \sqrt{2869}<4$.
(c) Suppose there was an ideal $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ of norm p, where $p \in\{2,3\}$. Show that p is prime, and that f has a root in $\mathbb{Z} / p \mathbb{Z} \simeq \mathcal{O}_{K} / \mathfrak{p}$ (show the isomorphism!)
(d) Conclude that every ideal of \mathcal{O}_{K} is principal.
9. (A new variant) Let $f(x)=x^{5}+a x-1$ where $a \in \mathbb{R}_{\geq 1}$.
(a) Show that f has a unique real root ε, satisfying $\frac{1}{a+1}<\varepsilon<\frac{1}{a}$.
(*b) For each primitive 8 th root of unity ζ, it seems that $\zeta a^{1 / 4}$ is not far from a root of f. Show that if a is large enough then f has a root within $\frac{1}{3 a}$ of $\zeta a^{1 / 4}-\frac{1}{4 a}$.
(c) Suppose $a \in \mathbb{Z}$. Show that any root of f is a unit.
10. Let $f(x)=x^{5}+2 x-1$, and let α be a root of $f, K=\mathbb{Q}(\alpha)$.
(a) Show that f is irreducible and that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(b) Show that there is unique prime above 11317 in \mathcal{O}_{K}. Show that it is principal and find a generator. Find the ramification index and residue degree.
(c) Find the primes of K above 2 (Hint: $\mathfrak{q}=(2, \varepsilon-1)$ is one of them).
(d) Show that every prime of K above 3,5 has residue degree at least 2 .
(${ }^{* *}$ e) Find the class number h_{K}.
11. (Toward the normal closure)

DEF Let β be another root of f, let $g(x)=\frac{f(x)}{x-\alpha} \in K[x]$ and let $L=K(\beta)$.
FACT Gauss's Lemma holds in number fields.
(a) Show that the image of $g(x)$ is irreducible in $\mathcal{O}_{K} /$ frakq (the ideal from 9(c)). Show that $g(x)$ is irreducible in $K[x]$.
(b) Find the primes of L above \mathfrak{q}.
(c) Show that $D_{L / K} \mid(\pi)^{3}$ where $\pi=5 \varepsilon^{4}+2$.

DEF Let γ be yet another root, $h(x)=\frac{g(x)}{x-\gamma} \in L[x], M=L(\gamma)$.
(d) Show that $h(x)$ is irreducible in $L[x]$.
11. Let N be the normal closure of K over \mathbb{Q} (the splitting field of f). Show that $T=\mathbb{Q}(\sqrt{11317}) \subset$ N. Which primes of T ramify in the extension N / T ?

Hint for 2 b : Show that if $|z|=\frac{1}{3 a}$ then $\left|f\left(\zeta a^{1 / 4}-\frac{1}{4 a}+z\right)\right|>1$ to conclude that f, g have the same number of roots in $B\left(\zeta a^{1 / 4}-\frac{1}{4 a}, \frac{1}{3 a}\right)$ where $g=x^{5}+a x$.

Hint for 3 b : The discriminant is the norm of the different.

