Math 538: Problem Set 3 (due 15/4/2013)

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Problems 2, 4, 6-8. 3 is useful for perspective.

Valuations and absolute values

- 1. Let *R* be an integral domain, K(R) its field of fractions.
 - (a) Show that any absolute value on K(R) is uniquely determined by its restriction to R.
 - (b) Let $|\cdot|: R \to \mathbb{R}_{\geq 0}$ be a map satisfying the definition of absolute values restricted to *R*. Show that it extends to an absolute value of *K*(*R*).
- 2. Prove *Ostrowski's Theorem*: every absolute value on \mathbb{Q} either discrete, equivalent to $|\cdot|_{\infty}$ or equivalent to $|\cdot|_p$ for some p.
- 3. Let F be a field, v a valuation on F(t) which is trivial on F (for example, F might be a finite field).
 - (a) Suppose that $v(f) \le 0$ for all $f \in F[t]$. Show that v(t) < 0 and that up to rescaling $v = v_{\infty}$ where $v_{\infty}(f) = -\deg f$.
 - (b) Suppose that v(f) > 0 for some $f \in F[t]$. Show there is an irreducible $p \in F[t]$ with that property, and that up to rescaling $v = v_p$ where $v_p(p^r \frac{f}{g}) = r$ where (p, fg) = 1.
 - (c) (Product formula) Fix q > 1, and set for $f \in F(t)$, $p \in F(t)$ irreducible set $|f|_p = q^{-(\deg p)v_p(f)}$, $|f|_{\infty} = q^{\deg f}$. Show that for all $f \in \mathbb{Q}(t)^{\times}$,

$$|f|_{\infty} \cdot \prod_{p \text{ monic irred}} |f|_p = 1.$$

- (d) Fix a transcendental α ∈ ℝ (or α ∈ Q_p) and for f ∈ Q(t) set |f| = |f(α)|_∞ (or |f| = |f(α)|_p). Show that this defines an absolute value on Q(t) which is not of the forms found in parts (a),(b).
- 3. Let (X,d) be an ultrametric space $(\forall x, y, z : d(x,z) \le \max \{d(x,y), d(y,z)\})$
 - (a) ("all triangles are isoceles") Let $x, y, z \in X$ and suppose that d(y, z) < d(x, y). Show that d(x, z) = d(x, y).
 - (b) Let B_1, B_2 be two closed balls in X. Show that one of the following holds: $B_1 \subset B_2$, $B_2 \subset B_1, B_1 \cap B_2 = \emptyset$.
 - (c) Show that the completion of an ultrametric space is ultrametric.
 - (d) Suppose that X is complete, and let $\{x_i\}_{i=1}^{\infty} \subset X$. Show that the sequence converges iff $\lim_{i\to\infty} d(x_i, x_{i+1}) = 0$.
 - (e) (Calculus student's dream) Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{Q}_p$. Show that $\sum_{n=0}^{\infty} a_n$ converges iff $\lim_{n\to\infty} a_n = 0$.

On \mathbb{Z}_p

- 4. (Odds and ends)
 - (a) Find $a_j \in \{0, \dots, p-1\}$ such that $-1 = \sum_{j=0}^{\infty} a_j p^j$ in \mathbb{Z}_p .
 - (b) Show that every $n \in \mathbb{Z}_{\geq 0}$ has a unique representation in the form $\sum_{j=0}^{J} a_j p^j$ (finite sum), $a_j \in \{0, \dots, p-1\}$
 - (c) Suppose *p* is odd. Show that every $n \in \mathbb{Z}$ has a unique representation in the form $\sum_{j=0}^{J} b_j p^j$ (finite sum), $b_j \in \left\{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\right\}$.
 - (d) (Moving to \mathbb{Q}_p is equivalent to localization) Show that $\mathbb{Q} \cap \mathbb{Z}_p = \mathbb{Z}_{(p)} = \{\frac{x}{s} \mid x, s \in \mathbb{Z}, p \nmid s\}$.
- 5. Show that \mathbb{Z}_p , hence \mathbb{Q}_p has the cardinality of the continuum.

Structure theory of \mathbb{Q}_p

Fix a field *F* and a non-archimedean absolute value $|\cdot|$ on *F*.

- 6. (Basic structure)
 - (a) Let $R = \{x \in F \mid |x| \le 1\}$. Show that *R* is a subring of *F*, and that it is a *valuation ring*: for all $x \in F^{\times}$ at least one of x, x^{-1} is in *R*. In particular, *F* is the field of fractions of *R*.
 - (b) Show that $R^{\times} = \{x \in F \mid |x| = 1\}.$
 - (c) (Analogue of "ring of integers") Show that R is *integrally closed*: if α ∈ F is a root of a monic f ∈ R[x] then α ∈ R (hint: supposing |α| > 1 calculate |f(α)| using 3(a)).
 - (d) Show that $P = \{x \in R \mid |x| < 1\}$ is the unique maximal ideal of *R* and that it is open in *R*. In particular, *R*/*P* is a field and its natural topology is discrete.
- 7. (Discrete valuations) Suppose now that $\{|x| | x \in F^{\times}\}$ is a discrete subset of $\mathbb{R}_{>0}^{\times}$ (equivalently that $\{\log |x| | x \in F^{\times}\}$ is a discrete subgroup of \mathbb{R}).
 - (a) Show that $\log |F^{\times}| = r\mathbb{Z}$ for some r > 0.
 - (b) Show that $|\cdot|$ is non-archimedean.
 - (c) ("Unique factorization") Let $\overline{\omega} \in P$ (read "pi", not "omega") have absolute value e^{-r} exactly. Show that the ideals of *R* are exactly ($\overline{\omega}^k$) for $k \ge 0$ and (0).
 - (d) ("Onion rings") Show that $\{x : |x| = e^{-kr}\} = \overline{\sigma}^k R^{\times}$.
 - (e) (Multiplicative group) For $k \ge 1$ show that $U_k = 1 + \varpi^k R$ is a compact and open subgroup of R^{\times} . Show that $U/U_1 \simeq (R/P)^{\times}$ and that for $k \ge 1$ $U_k/U_{k+1} \simeq (R/P, +)$.
 - (f) ("Passing to the completion merely reorganizes the information") Compare (c)-(e) with the corresponding results for $\mathbb{Z}/p^K\mathbb{Z}$ we saw earlier.
- 8. (Representation of elements) In addition to the assumption of 7, suppose now that F is complete with respect to the absolute value.
 - (a) ("Power series") Let $A \subset R$ be a set of representatives for R/P, with $0 \in A$. Show that every element of R has a unique representation in the form $\sum_{i=0}^{\infty} a_i \overline{\sigma}^i$ where $a_i \in A$.
 - (b) ("Laurent series") Show that every element of *F* has a unique representation in the form $\sum_{i=J}^{\infty} a_j \overline{\sigma}^j$ where $a_j \in A$, $J \in \mathbb{Z}$ and $a_J \neq 0$.
 - (c) Show that F is locally compact iff R is compact iff R^{\times} is compact iff R/P is finite.