Math 538: Problem Set 3 (due 15/4/2013)

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Problems 2, 4, 6-8. 3 is useful for perspective.

Valuations and absolute values

1. Let R be an integral domain, $K(R)$ its field of fractions.
(a) Show that any absolute value on $K(R)$ is uniquely determined by its restriction to R.
(b) Let $|\cdot|: R \rightarrow \mathbb{R}_{\geq 0}$ be a map satisfying the definition of absolute values restricted to R. Show that it extends to an absolute value of $K(R)$.
2. Prove Ostrowski's Theorem: every absolute value on \mathbb{Q} either discrete, equivalent to $|\cdot|_{\infty}$ or equivalent to $|\cdot|_{p}$ for some p.
3. Let F be a field, v a valuation on $F(t)$ which is trivial on F (for example, F might be a finite field).
(a) Suppose that $v(f) \leq 0$ for all $f \in F[t]$. Show that $v(t)<0$ and that up to rescaling $v=v_{\infty}$ where $v_{\infty}(f)=-\operatorname{deg} f$.
(b) Suppose that $v(f)>0$ for some $f \in F[t]$. Show there is an irreducible $p \in F[t]$ with that property, and that up to rescaling $v=v_{p}$ where $v_{p}\left(p^{r} \frac{f}{g}\right)=r$ where $(p, f g)=1$.
(c) (Product formula) Fix $q>1$, and set for $f \in F(t), p \in F(t)$ irreducible set $|f|_{p}=q^{-(\operatorname{deg} p) v_{p}(f)}$, $|f|_{\infty}=q^{\operatorname{deg} f}$. Show that for all $f \in \mathbb{Q}(t)^{\times}$,

$$
|f|_{\infty} \cdot \prod_{p \text { monic irred }}|f|_{p}=1 .
$$

(d) Fix a transcendental $\alpha \in \mathbb{R}$ (or $\alpha \in \mathbb{Q}_{p}$) and for $f \in \mathbb{Q}(t)$ set $|f|=|f(\alpha)|_{\infty}$ (or $|f|=$ $\left.|f(\alpha)|_{p}\right)$. Show that this defines an absolute value on $\mathbb{Q}(t)$ which is not of the forms found in parts (a),(b).
3. Let (X, d) be an ultrametric space $(\forall x, y, z: d(x, z) \leq \max \{d(x, y), d(y, z)\})$
(a) ("all triangles are isoceles") Let $x, y, z \in X$ and suppose that $d(y, z)<d(x, y)$. Show that $d(x, z)=d(x, y)$.
(b) Let B_{1}, B_{2} be two closed balls in X. Show that one of the following holds: $B_{1} \subset B_{2}$, $B_{2} \subset B_{1}, B_{1} \cap B_{2}=\emptyset$.
(c) Show that the completion of an ultrametric space is ultrametric.
(d) Suppose that X is complete, and let $\left\{x_{i}\right\}_{i=1}^{\infty} \subset X$. Show that the sequence converges iff $\lim _{i \rightarrow \infty} d\left(x_{i}, x_{i+1}\right)=0$.
(e) (Calculus student's dream) Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{Q}_{p}$. Show that $\sum_{n=0}^{\infty} a_{n}$ converges iff $\lim _{n \rightarrow \infty} a_{n}=$ 0.

On \mathbb{Z}_{p}

4. (Odds and ends)
(a) Find $a_{j} \in\{0, \ldots, p-1\}$ such that $-1=\sum_{j=0}^{\infty} a_{j} p^{j}$ in \mathbb{Z}_{p}.
(b) Show that every $n \in \mathbb{Z}_{\geq 0}$ has a unique representation in the form $\sum_{j=0}^{J} a_{j} p^{j}$ (finite sum), $a_{j} \in\{0, \ldots, p-1\}$
(c) Suppose p is odd. Show that every $n \in \mathbb{Z}$ has a unique representation in the form $\sum_{j=0}^{J} b_{j} p^{j}$ (finite sum), $b_{j} \in\left\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\right\}$.
(d) (Moving to \mathbb{Q}_{p} is equivalent to localization) Show that $\mathbb{Q} \cap \mathbb{Z}_{p}=\mathbb{Z}_{(p)}=\left\{\left.\frac{x}{s} \right\rvert\, x, s \in \mathbb{Z}, p \nmid s\right\}$.
5. Show that \mathbb{Z}_{p}, hence \mathbb{Q}_{p} has the cardinality of the continuum.

Structure theory of \mathbb{Q}_{p}

Fix a field F and a non-archimedean absolute value $|\cdot|$ on F.
6. (Basic structure)
(a) Let $R=\{x \in F| | x \mid \leq 1\}$. Show that R is a subring of F, and that it is a valuation ring: for all $x \in F^{\times}$at least one of x, x^{-1} is in R. In particular, F is the field of fractions of R.
(b) Show that $R^{\times}=\{x \in F| | x \mid=1\}$.
(c) (Analogue of "ring of integers") Show that R is integrally closed: if $\alpha \in F$ is a root of a monic $f \in R[x]$ then $\alpha \in R$ (hint: supposing $|\alpha|>1$ calculate $|f(\alpha)|$ using 3(a)).
(d) Show that $P=\{x \in R| | x \mid<1\}$ is the unique maximal ideal of R and that it is open in R. In particular, R / P is a field and its natural topology is discrete.
7. (Discrete valuations) Suppose now that $\left\{|x| \mid x \in F^{\times}\right\}$is a discrete subset of $\mathbb{R}_{>0}^{\times}$(equivalently that $\left\{\log |x| \mid x \in F^{\times}\right\}$is a discrete subgroup of \mathbb{R}).
(a) Show that $\log \left|F^{\times}\right|=r \mathbb{Z}$ for some $r>0$.
(b) Show that $|\cdot|$ is non-archimedean.
(c) ("Unique factorization") Let $\bar{\Phi} \in P$ (read "pi", not "omega") have absolute value e^{-r} exactly. Show that the ideals of R are exactly $\left(\varpi^{k}\right)$ for $k \geq 0$ and (0).
(d) ("Onion rings") Show that $\left\{x:|x|=e^{-k r}\right\}=\bar{\varpi}^{k} R^{\times}$.
(e) (Multiplicative group) For $k \geq 1$ show that $U_{k}=1+\Phi^{k} R$ is a compact and open subgroup of R^{\times}. Show that $U / U_{1} \simeq(R / P)^{\times}$and that for $k \geq 1 U_{k} / U_{k+1} \simeq(R / P,+)$.
(f) ("Passing to the completion merely reorganizes the information") Compare (c)-(e) with the corresponding results for $\mathbb{Z} / p^{K} \mathbb{Z}$ we saw earlier.
8. (Representation of elements) In addition to the assumption of 7 , suppose now that F is complete with respect to the absolute value.
(a) ("Power series") Let $A \subset R$ be a set of representatives for R / P, with $0 \in A$. Show that every element of R has a unique representation in the form $\sum_{j=0}^{\infty} a_{j} \varpi^{j}$ where $a_{j} \in A$.
(b) ("Laurent series") Show that every element of F has a unique representation in the form $\sum_{j=J}^{\infty} a_{j} \varpi^{j}$ where $a_{j} \in A, J \in \mathbb{Z}$ and $a_{J} \neq 0$.
(c) Show that F is locally compact iff R is compact iff R^{\times}is compact iff R / P is finite.

